Data analysis involves a broad set of activities to clean, process and transform a data collection to learn from it. Python is commonly used as a programming language to perform data analysis because many tools, such as Jupyter Notebook, pandas and Bokeh, are written in Python and can be quickly applied rather than coding your own data analysis libraries from scratch.
The following series on data exploration uses Python as the implementation language while walking through various stages of how to analyze a data set.
The Python Data Science Handbook is available to read for free online, although I also recommend buying the book as it is a great resource for learning the topic.
PyData TV contains all the videos from the PyData conference series. The conference talks are often given by professional data scientists and the developers who write these analysis libraries, so there is a wealth of information not necessarily captured anywhere else.
Searching for a complete, step-by-step deployment walkthrough? Learn more about The Full Stack Python Guide to Deployments book.