

Sparkle Revisited: Proving Tight Adaptive Security of a Simple Schnorr Threshold Scheme

January 26, MPTS 2026
NIST Workshop on Multi-Party Threshold Schemes

Ojaswi Acharya (UMass Amherst)

Georg Fuchsbauer (TU Wien)

Adam O'Neill (UMass Amherst)

Marek Sefranek (TU Wien)

“Revisiting the Security of Sparkle”

on ePrint soon...

University of
Massachusetts
Amherst

Threshold Signatures

- t -out-of- n Threshold Signatures (TS):
 - Distribute signing power among n parties
 - Any subset $\geq t$ can jointly generate a standard signature
 - Compatible with a single, aggregate public key

Threshold Signatures

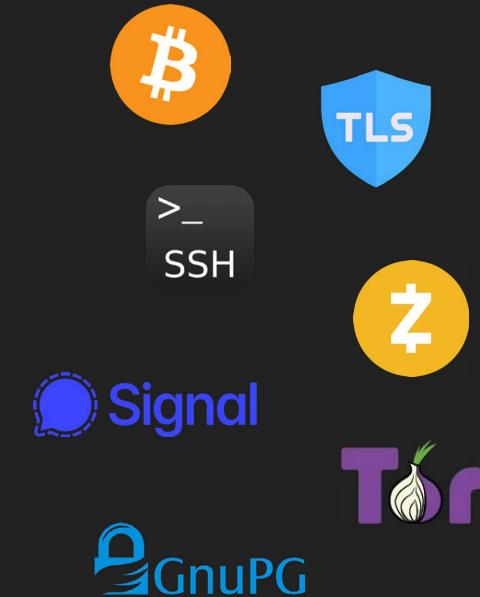
- t -out-of- n Threshold Signatures (TS):
 - Distribute signing power among n parties
 - Any subset $\geq t$ can jointly generate a standard signature
 - Compatible with a single, aggregate public key
- Security models: static vs. adaptive corruptions

Threshold Signatures

- t -out-of- n Threshold Signatures (TS):
 - Distribute signing power among n parties
 - Any subset $\geq t$ can jointly generate a standard signature
 - Compatible with a single, aggregate public key
- Security models: static vs. adaptive corruptions
- Schnorr signatures:

Threshold Signatures

- t -out-of- n Threshold Signatures (TS):
 - Distribute signing power among n parties
 - Any subset $\geq t$ can jointly generate a standard signature
 - Compatible with a single, aggregate public key
- Security models: static vs. adaptive corruptions
- Schnorr signatures:
 - Standardized & widely deployed (e.g., EdDSA, Taproot)
 - Schnorr TS: “out-of-the-box” compatibility with plain Schnorr verification



Motivation

- Our focus: **Sparkle** (Crites, Komlo, and Maller [CKM23])

Motivation

- Our focus: **Sparkle** (Crites, Komlo, and Maller [CKM23])
- Concretely efficient & natural 3-round Schnorr TS scheme

Motivation

- Our focus: **Sparkle** (Crites, Komlo, and Maller [CKM23])
- Concretely efficient & natural 3-round Schnorr TS scheme
- Follows a **commit-reveal-sign** paradigm

Motivation

- Our focus: **Sparkle** (Crites, Komlo, and Maller [CKM23])
- Concretely efficient & natural **3-round Schnorr TS scheme**
- Follows a **commit-reveal-sign** paradigm
- However, Bacho et al. [BLT+24] identified a **gap in original security proof**

Motivation

- Our focus: **Sparkle** (Crites, Komlo, and Maller [CKM23])
- Concretely efficient & natural 3-round Schnorr TS scheme
- Follows a **commit-reveal-sign** paradigm
- However, Bacho et al. [BLT+24] identified a **gap in original security proof**
- To address this, **Sparkle+** was introduced:

Motivation

- Our focus: **Sparkle** (Crites, Komlo, and Maller [CKM23])
- Concretely efficient & natural 3-round Schnorr TS scheme
- Follows a **commit-reveal-sign** paradigm
- However, Bacho et al. [BLT+24] identified a **gap in original security proof**
- To address this, **Sparkle+** was introduced:
 - Adds **auxiliary signature scheme** ⇒ **significant overhead**

Motivation

- Our focus: **Sparkle** (Crites, Komlo, and Maller [CKM23])
- Concretely efficient & natural 3-round Schnorr TS scheme
- Follows a **commit-reveal-sign** paradigm
- However, Bacho et al. [BLT+24] identified a **gap in original security proof**
- To address this, **Sparkle+** was introduced:
 - Adds **auxiliary signature scheme** ⇒ **significant overhead**
 - Proof of **full adaptive security** also later **invalidated** [CS25, CKK+25]

Motivation

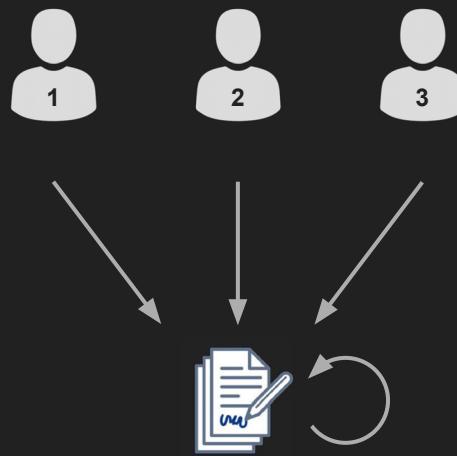
- Our focus: **Sparkle** (Crites, Komlo, and Maller [CKM23])
- Concretely efficient & natural 3-round Schnorr TS scheme
- Follows a **commit-reveal-sign** paradigm
- However, Bacho et al. [BLT+24] identified a **gap in original security proof**
- To address this, **Sparkle+** was introduced:
 - Adds **auxiliary signature scheme** ⇒ **significant overhead**
 - Proof of **full adaptive security** also later **invalidated** [CS25, CKK+25]
- These negative results identify proof deficiencies, **not practical attacks!**

Our Question

Can the original Sparkle scheme be proved—statically or even adaptively—secure?

Goal 1: Full Adaptive Security

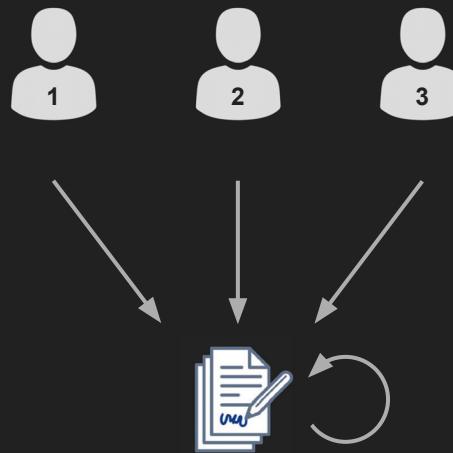
- Static corruption model



Goal 1: Full Adaptive Security

- Static corruption model

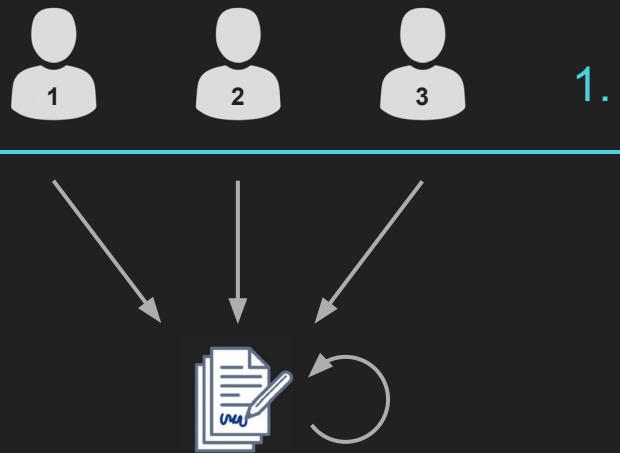
$t = 3$



Goal 1: Full Adaptive Security

- Static corruption model

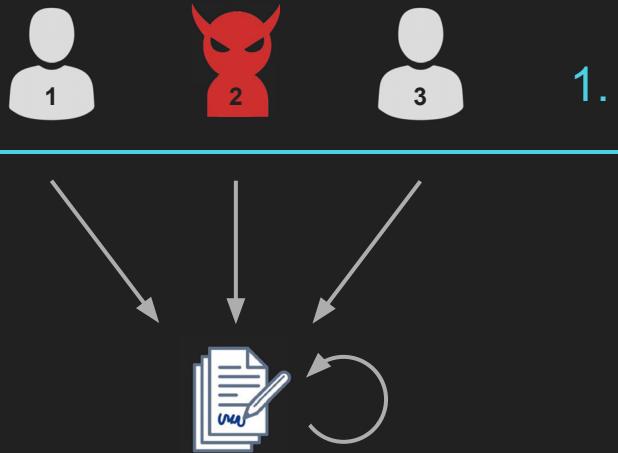
$t = 3$



Goal 1: Full Adaptive Security

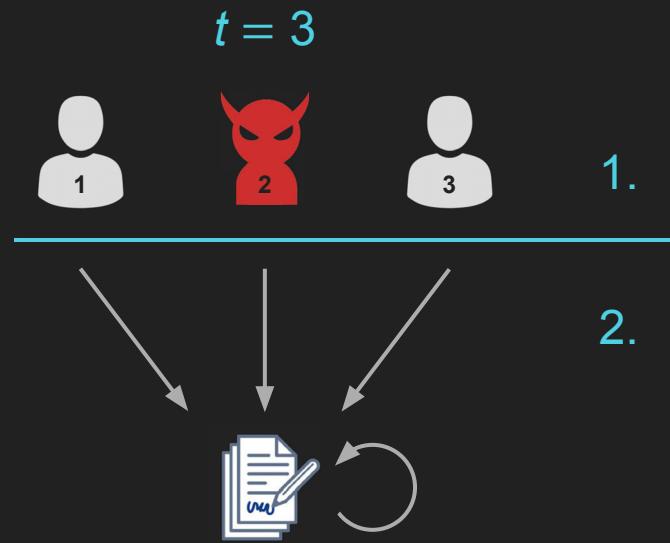
- Static corruption model

$t = 3$



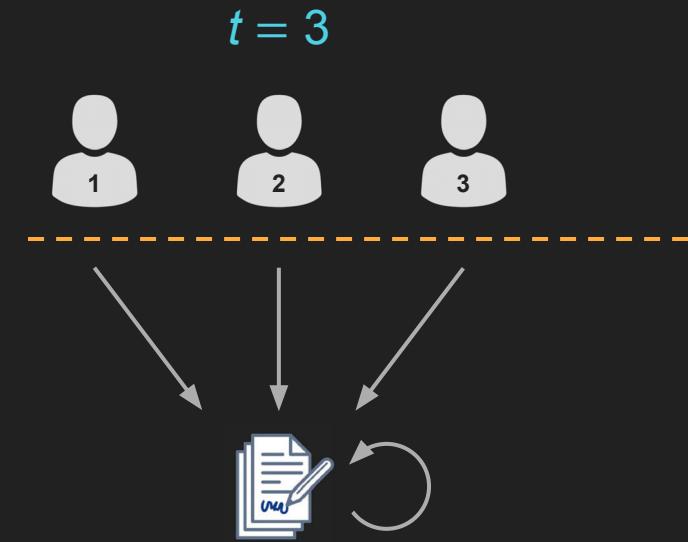
Goal 1: Full Adaptive Security

- Static corruption model



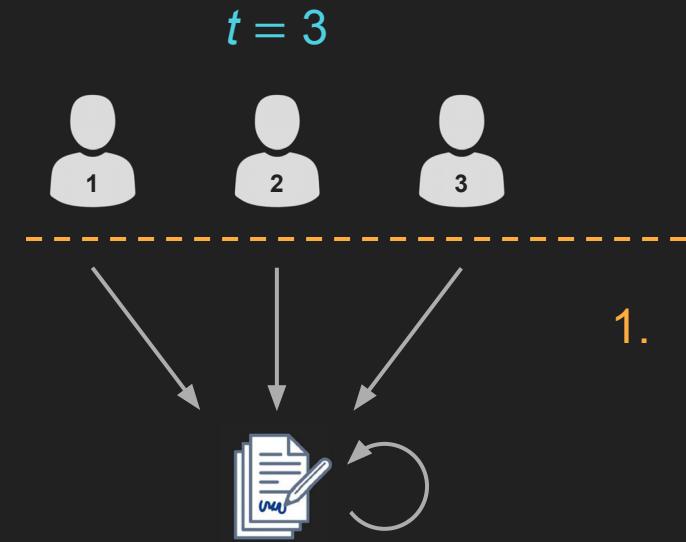
Goal 1: Full Adaptive Security

- **Static** corruption model
- **Adaptive** corruption model:



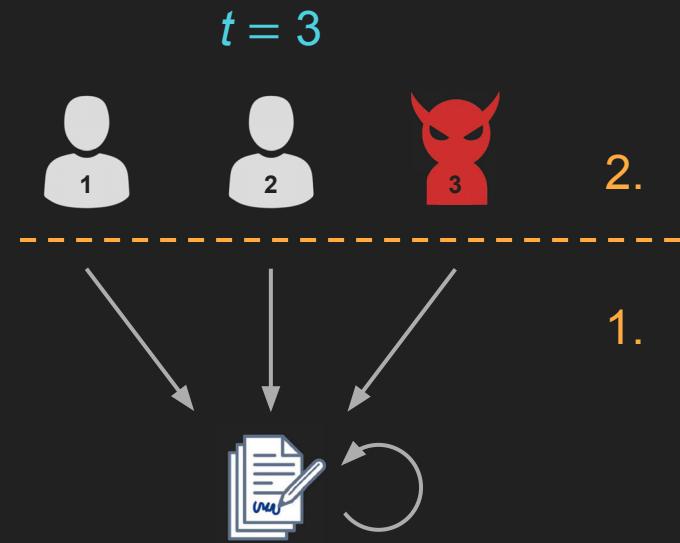
Goal 1: Full Adaptive Security

- **Static** corruption model
- **Adaptive** corruption model:



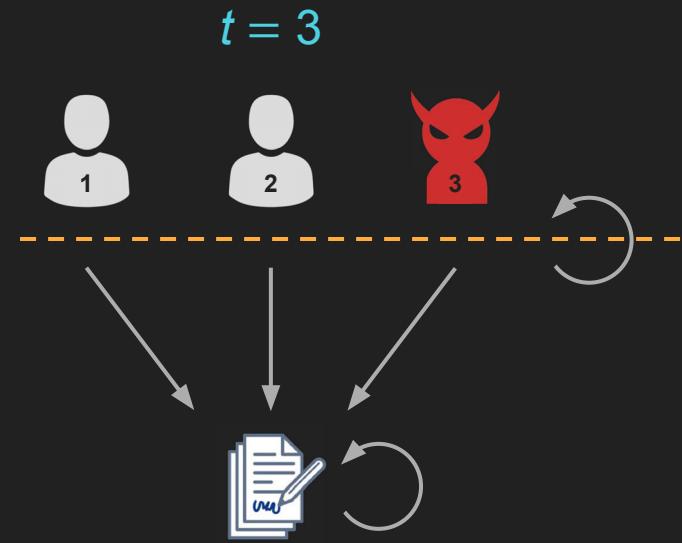
Goal 1: Full Adaptive Security

- **Static** corruption model
- **Adaptive** corruption model:



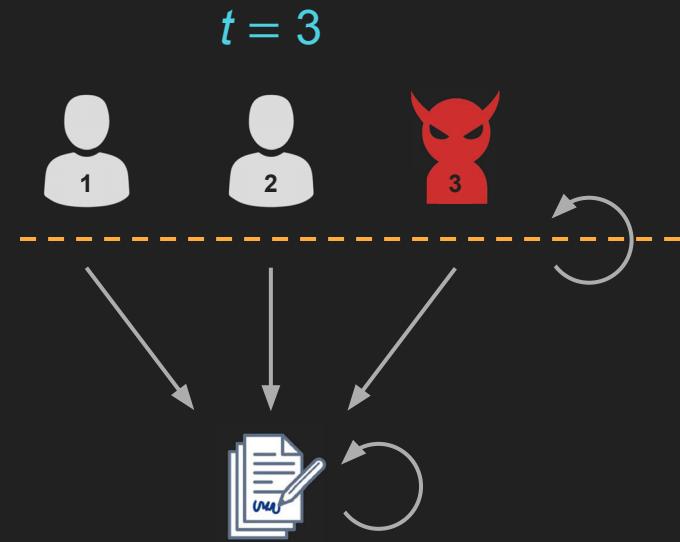
Goal 1: Full Adaptive Security

- **Static** corruption model
- **Adaptive** corruption model:
 - More realistic & practically relevant



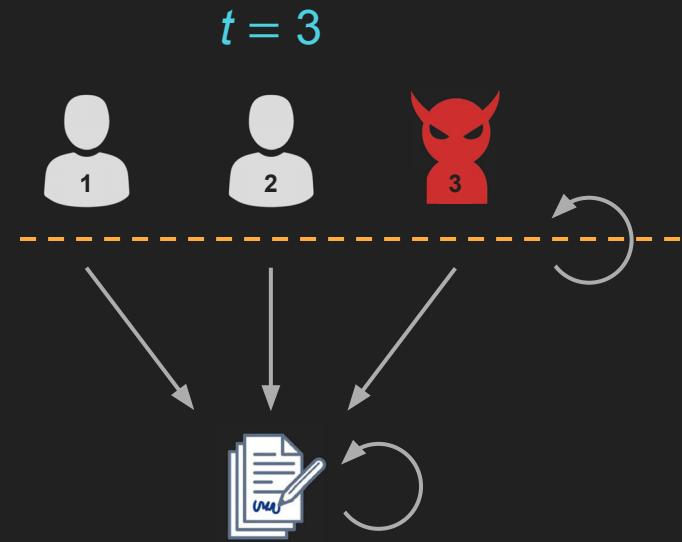
Goal 1: Full Adaptive Security

- **Static** corruption model
- **Adaptive** corruption model:
 - More realistic & practically relevant
- **Full** adaptive security:



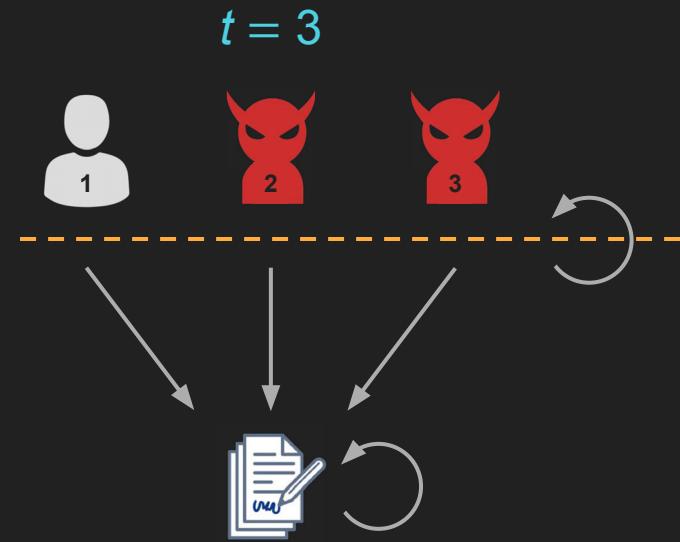
Goal 1: Full Adaptive Security

- **Static** corruption model
- **Adaptive** corruption model:
 - More realistic & practically relevant
- **Full** adaptive security:
 - Allows (adaptive) corruptions of up to **one fewer** than the signing threshold t



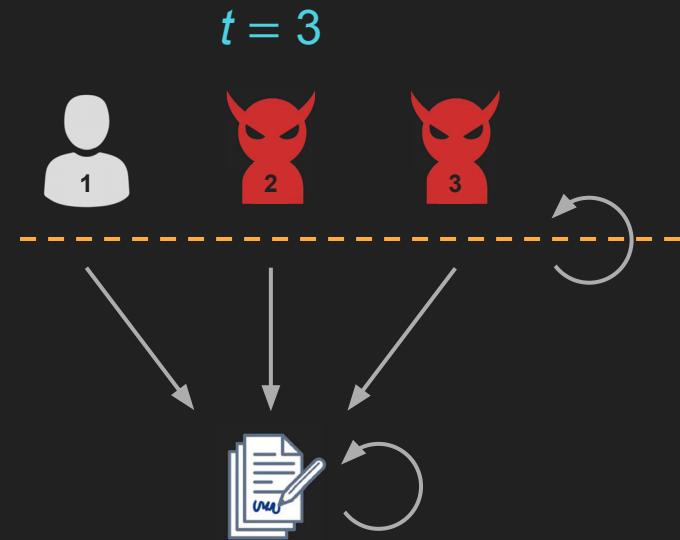
Goal 1: Full Adaptive Security

- **Static** corruption model
- **Adaptive** corruption model:
 - More realistic & practically relevant
- **Full** adaptive security:
 - Allows (adaptive) corruptions of up to **one fewer** than the signing threshold t



Goal 1: Full Adaptive Security

- **Static** corruption model
- **Adaptive** corruption model:
 - More realistic & practically relevant
- **Full** adaptive security:
 - Allows (adaptive) corruptions of up to **one fewer** than the signing threshold t
 - Achieving this notion poses **several challenges**



Goal 2: “Pure” ROM Security

- Random oracle model (ROM): idealizes hash function as random function

Goal 2: “Pure” ROM Security

- Random oracle model (ROM): idealizes hash function as random function
- Security proofs for Schnorr-based constructions only known in ROM

Goal 2: “Pure” ROM Security

- Random oracle model (ROM): idealizes hash function as random function
- Security proofs for Schnorr-based constructions only known in ROM
- However, for full adp. security, many Schnorr TS schemes also rely on AGM:

Goal 2: “Pure” ROM Security

- Random oracle model (ROM): idealizes hash function as random function
- Security proofs for Schnorr-based constructions only known in ROM
- However, for full adp. security, many Schnorr TS schemes also rely on AGM:
 - Algebraic group model (AGM) only considers “algebraic” adversaries

Goal 2: “Pure” ROM Security

- Random oracle model (ROM): idealizes hash function as random function
- Security proofs for Schnorr-based constructions only known in ROM
- However, for full adp. security, many Schnorr TS schemes also rely on AGM:
 - Algebraic group model (AGM) only considers “algebraic” adversaries
 - E.g. FROST and its variants and the (flawed) full adp. security proof of Sparkle+

Goal 2: “Pure” ROM Security

- Random oracle model (ROM): idealizes hash function as random function
- Security proofs for Schnorr-based constructions only known in ROM
- However, for full adp. security, many Schnorr TS schemes also rely on AGM:
 - Algebraic group model (AGM) only considers “algebraic” adversaries
 - E.g. FROST and its variants and the (flawed) full adp. security proof of Sparkle+
- Our goal is to avoid additional idealized models

Goal 3: Tight Security

- Suppose want to use Schnorr signatures over elliptic curve with 128-bit security – how large does the group order need to be?

Goal 3: Tight Security

- Suppose want to use Schnorr signatures over elliptic curve with 128-bit security – how large does the group order need to be?

We should use a group order of **256** bits!

Practitioners

Goal 3: Tight Security

- Suppose want to use Schnorr signatures over elliptic curve with 128-bit security – how large does the group order need to be?

Practitioners

We should use a group order of **256** bits!

Best known attack:
break DL, which takes time $O(\sqrt{|G|})$

Goal 3: Tight Security

- Suppose want to use Schnorr signatures over elliptic curve with 128-bit security – how large does the group order need to be?

We should use a group order of **768** bits!

Theoreticians

Goal 3: Tight Security

- Suppose want to use Schnorr signatures over elliptic curve with 128-bit security – how large does the group order need to be?

We should use a group order of **768** bits!

[PS96] in **ROM**:

$$\text{Adv}_{\text{Sch}[\mathbb{G}]}^{\text{euf-cma}} \leq q_h \cdot \sqrt{\text{Adv}_{\mathbb{G}}^{\text{dl}}} + \dots$$

Theoreticians

Goal 3: Tight Security

- Suppose want to use Schnorr signatures over elliptic curve with 128-bit security – how large does the group order need to be?

Practitioners

We should use a group order of **256** bits!

We should use a group order of **768** bits!

Theoreticians

Summary of Our Results

1. Introduce new simulation technique \Rightarrow static security of Sparkle

Summary of Our Results

1. Introduce new simulation technique \Rightarrow static security of Sparkle
2. Introduce new assumption VCDL \Rightarrow tight full adaptive security of Sparkle

Summary of Our Results

1. Introduce new simulation technique \Rightarrow static security of Sparkle
2. Introduce new assumption VCDL \Rightarrow tight full adaptive security of Sparkle
3. Justify VCDL: reduce VCDL to necessary assumption LDVR [CKK+25]
when idealizing the group

Comparison with Selected Schemes

Scheme	Rounds	Model	Comm. / Signer	Comp. / Signer
FROST	2	ROM+AGM	$2\mathbb{G} + \mathbb{Z}_p$	3 Exp
Sparkle	3	ROM*	$\mathbb{G} + 2\mathbb{Z}_p$	1 Exp

* Our new result

Comparison with Selected Schemes

Scheme	Rounds	Model	Comm. / Signer	Comp. / Signer
FROST	2	ROM+AGM	$2\mathbb{G} + \mathbb{Z}_p$	3 Exp
Sparkle	3	ROM*	$\mathbb{G} + 2\mathbb{Z}_p$	1 Exp
Sparkle+	3	ROM+AGM	$2\mathbb{G} + \mathbb{Z}_p + \text{DS.S} $	1 Exp + DS.S + t DS.V

* Our new result

DS = auxiliary signature scheme

Comparison with Selected Schemes

Scheme	Rounds	Model	Comm. / Signer	Comp. / Signer
FROST	2	ROM+AGM	$2\mathbb{G} + \mathbb{Z}_p$	3 Exp
Sparkle	3	ROM*	$\mathbb{G} + 2\mathbb{Z}_p$	1 Exp
Sparkle+	3	ROM+AGM	$2\mathbb{G} + \mathbb{Z}_p + \text{DS.S} $	1 Exp + DS.S + t DS.V
Gargos	3	ROM	$2\mathbb{G} + 7\mathbb{Z}_p$	8 Exp + NIZK.P + t NIZK.V

* Our new result

DS = auxiliary signature scheme

NIZK = non-interactive zero-knowledge proof system

The Sparkle Scheme

- Group (\mathbb{G}, p, g) , hash functions $H_{\text{sig}}, H_{\text{cm}}: \{0, 1\}^* \rightarrow \mathbb{Z}_p$

The Sparkle Scheme

- Group (\mathbb{G}, p, g) , hash functions $H_{\text{sig}}, H_{\text{cm}}: \{0, 1\}^* \rightarrow \mathbb{Z}_p$
- Shamir-secret-shared Schnorr secret key x with verification key shares X_i

The Sparkle Scheme

- Group (\mathbb{G}, p, g) , hash functions $H_{\text{sig}}, H_{\text{cm}}: \{0, 1\}^* \rightarrow \mathbb{Z}_p$
- Shamir-secret-shared Schnorr secret key x with verification key shares X_i
- 3 signing rounds:

The Sparkle Scheme

- Group (\mathbb{G}, p, g) , hash functions $H_{\text{sig}}, H_{\text{cm}}: \{0, 1\}^* \rightarrow \mathbb{Z}_p$
- Shamir-secret-shared Schnorr secret key x with verification key shares X_i
- 3 signing rounds:
 1. Commit to random nonce $R_k \leftarrow g^{r_k}$ for $r_k \leftarrow \mathbb{Z}_p^*$: $\text{cm}_k \leftarrow H_{\text{cm}}(k, R_k)$

The Sparkle Scheme

- Group (\mathbb{G}, p, g) , hash functions $H_{\text{sig}}, H_{\text{cm}}: \{0, 1\}^* \rightarrow \mathbb{Z}_p$
- Shamir-secret-shared Schnorr secret key x with verification key shares X_i
- 3 signing rounds:
 1. Commit to random nonce $R_k \leftarrow g^{r_k}$ for $r_k \leftarrow \mathbb{Z}_p^{\$}$: $\text{cm}_k \leftarrow H_{\text{cm}}(k, R_k)$
 2. Open commitments: reveal R_k

The Sparkle Scheme

- Group (\mathbb{G}, p, g) , hash functions $H_{\text{sig}}, H_{\text{cm}}: \{0, 1\}^* \rightarrow \mathbb{Z}_p$
- Shamir-secret-shared Schnorr secret key x with verification key shares X_i
- 3 signing rounds:
 1. Commit to random nonce $R_k \leftarrow g^{r_k}$ for $r_k \leftarrow \mathbb{Z}_p^*$: $\text{cm}_k \leftarrow H_{\text{cm}}(k, R_k)$
 2. Open commitments: reveal R_k
 3. Verify openings and compute partial signature:

The Sparkle Scheme

- Group (\mathbb{G}, p, g) , hash functions $H_{\text{sig}}, H_{\text{cm}}: \{0, 1\}^* \rightarrow \mathbb{Z}_p$
- Shamir-secret-shared Schnorr secret key x with verification key shares X_i
- 3 signing rounds:
 1. Commit to random nonce $R_k \leftarrow g^{r_k}$ for $r_k \leftarrow \mathbb{Z}_p^*$: $\text{cm}_k \leftarrow H_{\text{cm}}(k, R_k)$
 2. Open commitments: reveal R_k
 3. Verify openings and compute partial signature:

$$z_k \leftarrow r_k + c \cdot x_k \cdot \lambda_k^S, \text{ where } c \leftarrow H_{\text{sig}}(X, m, \prod R_i)$$

The Sparkle Scheme

- Group (\mathbb{G}, p, g) , hash functions $H_{\text{sig}}, H_{\text{cm}}: \{0, 1\}^* \rightarrow \mathbb{Z}_p$
- Shamir-secret-shared Schnorr secret key x with verification key shares X_i
- 3 signing rounds:
 1. Commit to random nonce $R_k \leftarrow g^{r_k}$ for $r_k \leftarrow \mathbb{Z}_p^{\$}$: $\text{cm}_k \leftarrow H_{\text{cm}}(k, R_k)$
 2. Open commitments: reveal R_k
 3. Verify openings and compute partial signature:
$$z_k \leftarrow r_k + c \cdot x_k \cdot \lambda_k^S, \text{ where } c \leftarrow H_{\text{sig}}(X, m, \prod R_i)$$
- Final Schnorr signature: $(R, z) = (\prod R_i, \sum z_i)$

Problem 1: How to Simulate Sparkle

Original Simulation Strategy

- Core idea [CKM23]:

Original Simulation Strategy

- Core idea [CKM23]:
 - Instead of sampling $r_k \xleftarrow{\$} \mathbb{Z}_p$ for $R_k \leftarrow g^{r_k}$ and setting $z_k \leftarrow r_k + c \cdot x_k \cdot \lambda_k^S$

Original Simulation Strategy

- Core idea [CKM23]:
 - Instead of sampling $r_k \xleftarrow{\$} \mathbb{Z}_p$ for $R_k \leftarrow g^{r_k}$ and setting $z_k \leftarrow r_k + c \cdot x_k \cdot \lambda_k^S$
 - Sample $z_k \xleftarrow{\$} \mathbb{Z}_p$ and set $R_k \leftarrow g^{z_k} \cdot X_k^{-c \cdot \lambda_k^S}$ s.t. $r_k = z_k - c \cdot x_k \cdot \lambda_k^S$

Original Simulation Strategy

- Core idea [CKM23]:
 - Instead of sampling $r_k \xleftarrow{\$} \mathbb{Z}_p$ for $R_k \leftarrow g^{r_k}$ and setting $z_k \leftarrow r_k + c \cdot x_k \cdot \lambda_k^S$
 - Sample $z_k \xleftarrow{\$} \mathbb{Z}_p$ and set $R_k \leftarrow g^{z_k} \cdot X_k^{-c \cdot \lambda_k^S}$ s.t. $r_k = z_k - c \cdot x_k \cdot \lambda_k^S$
- Bacho et al. [BLT+24] identified a gap:

Original Simulation Strategy

- Core idea [CKM23]:
 - Instead of sampling $r_k \xleftarrow{\$} \mathbb{Z}_p$ for $R_k \leftarrow g^{r_k}$ and setting $z_k \leftarrow r_k + c \cdot x_k \cdot \lambda_k^S$
 - Sample $z_k \xleftarrow{\$} \mathbb{Z}_p$ and set $R_k \leftarrow g^{z_k} \cdot X_k^{-c \cdot \lambda_k^S}$ s.t. $r_k = z_k - c \cdot x_k \cdot \lambda_k^S$
- Bacho et al. [BLT+24] identified a gap:
 - Simulation fails when adversary sends inconsistent commitments to different honest parties

Original Simulation Strategy

- Core idea [CKM23]:
 - Instead of sampling $r_k \xleftarrow{\$} \mathbb{Z}_p$ for $R_k \leftarrow g^{r_k}$ and setting $z_k \leftarrow r_k + c \cdot x_k \cdot \lambda_k^S$
 - Sample $z_k \xleftarrow{\$} \mathbb{Z}_p$ and set $R_k \leftarrow g^{z_k} \cdot X_k^{-c \cdot \lambda_k^S}$ s.t. $r_k = z_k - c \cdot x_k \cdot \lambda_k^S$
- Bacho et al. [BLT+24] identified a gap:
 - Simulation fails when adversary sends inconsistent commitments to different honest parties
 - Applies to both static & adaptive security

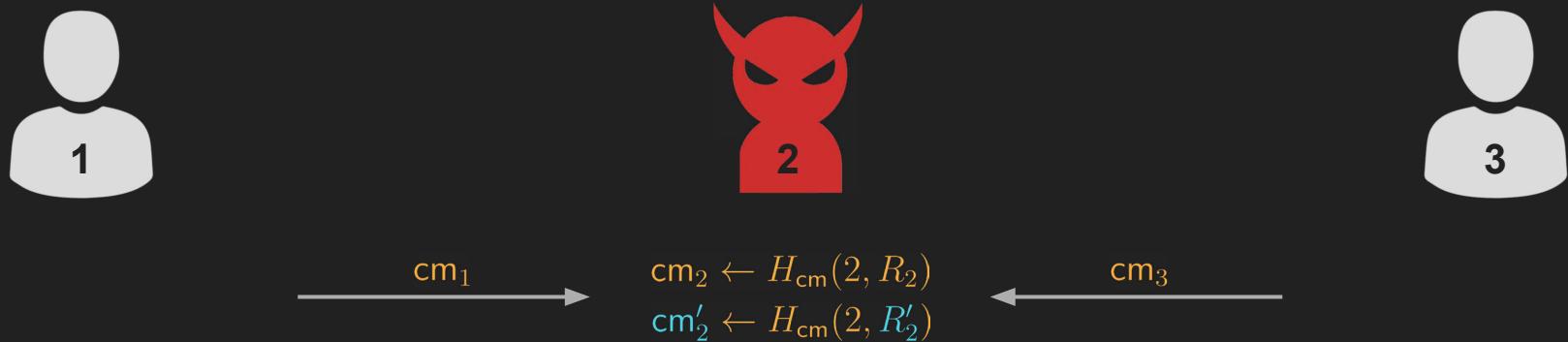
Original Simulation Strategy

- Core idea [CKM23]:
 - Instead of sampling $r_k \xleftarrow{\$} \mathbb{Z}_p$ for $R_k \leftarrow g^{r_k}$ and setting $z_k \leftarrow r_k + c \cdot x_k \cdot \lambda_k^S$
 - Sample $z_k \xleftarrow{\$} \mathbb{Z}_p$ and set $R_k \leftarrow g^{z_k} \cdot X_k^{-c \cdot \lambda_k^S}$ s.t. $r_k = z_k - c \cdot x_k \cdot \lambda_k^S$
- Bacho et al. [BLT+24] identified a gap:
 - Simulation fails when adversary sends inconsistent commitments to different honest parties
 - Applies to both static & adaptive security
 - Fixed in **Sparkle+** by having parties sign their local views

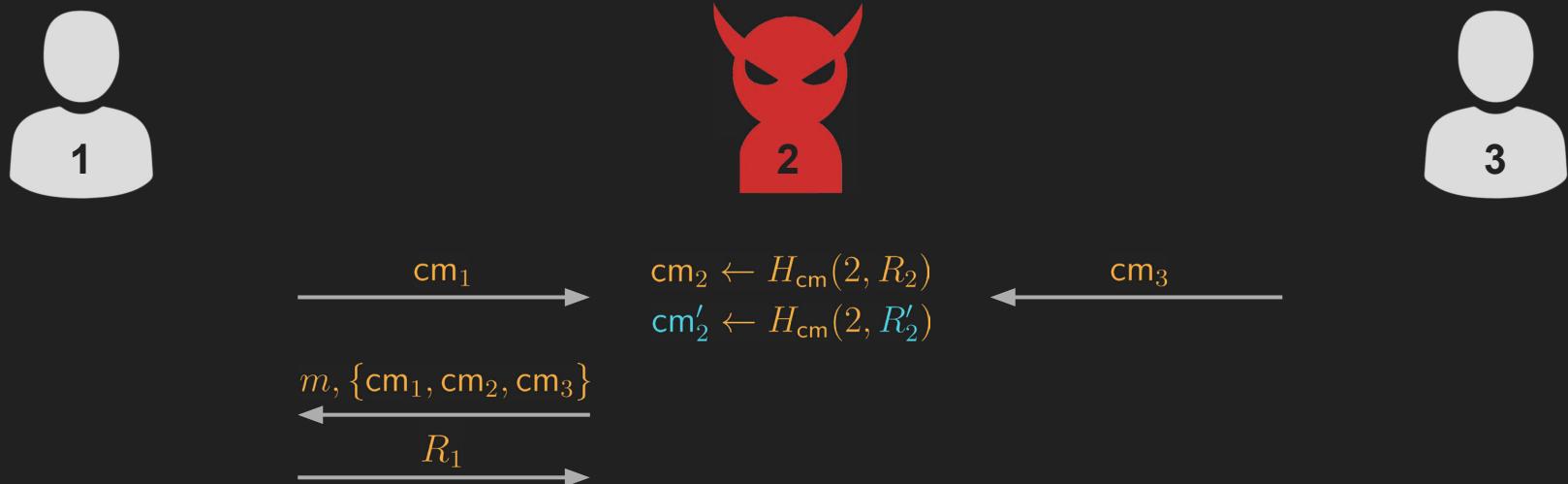
Counterexample: $t = 3$, $\mathcal{S} = \{1, 2, 3\}$

Counterexample: $t = 3$, $\mathcal{S} = \{1, 2, 3\}$

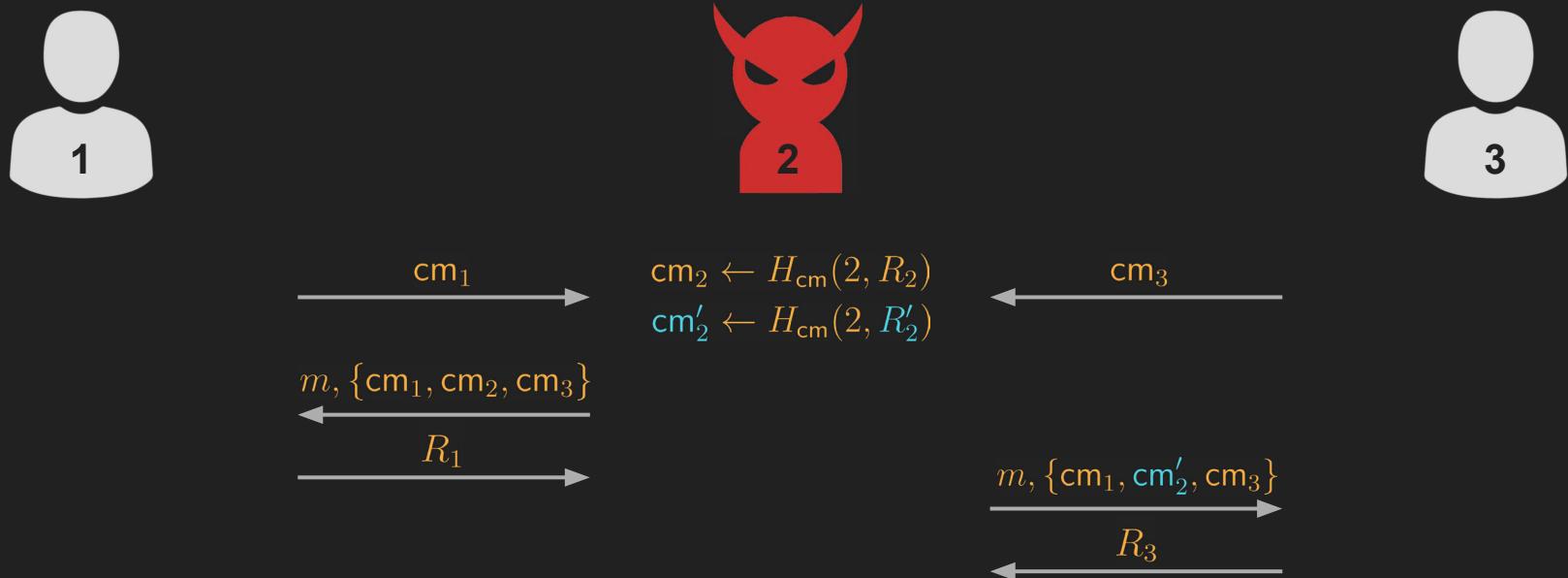
Counterexample: $t = 3$, $\mathcal{S} = \{1, 2, 3\}$



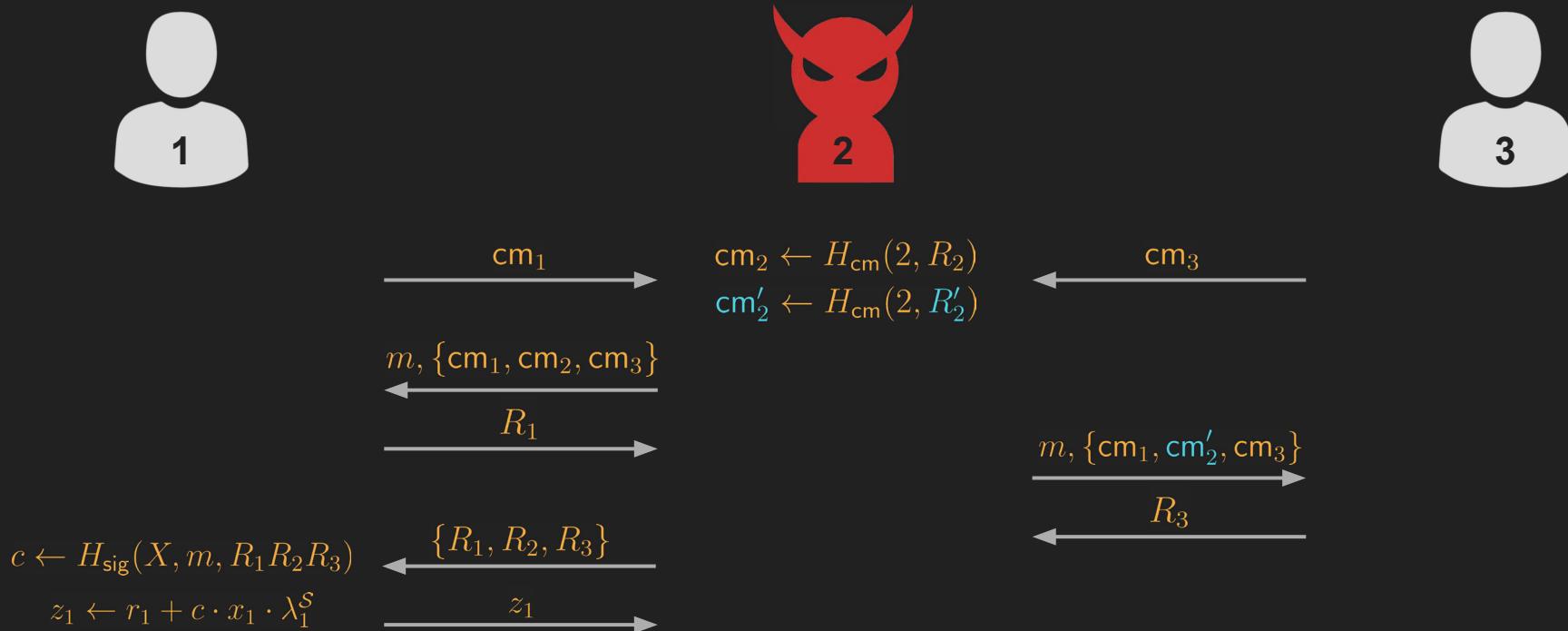
Counterexample: $t = 3$, $\mathcal{S} = \{1, 2, 3\}$



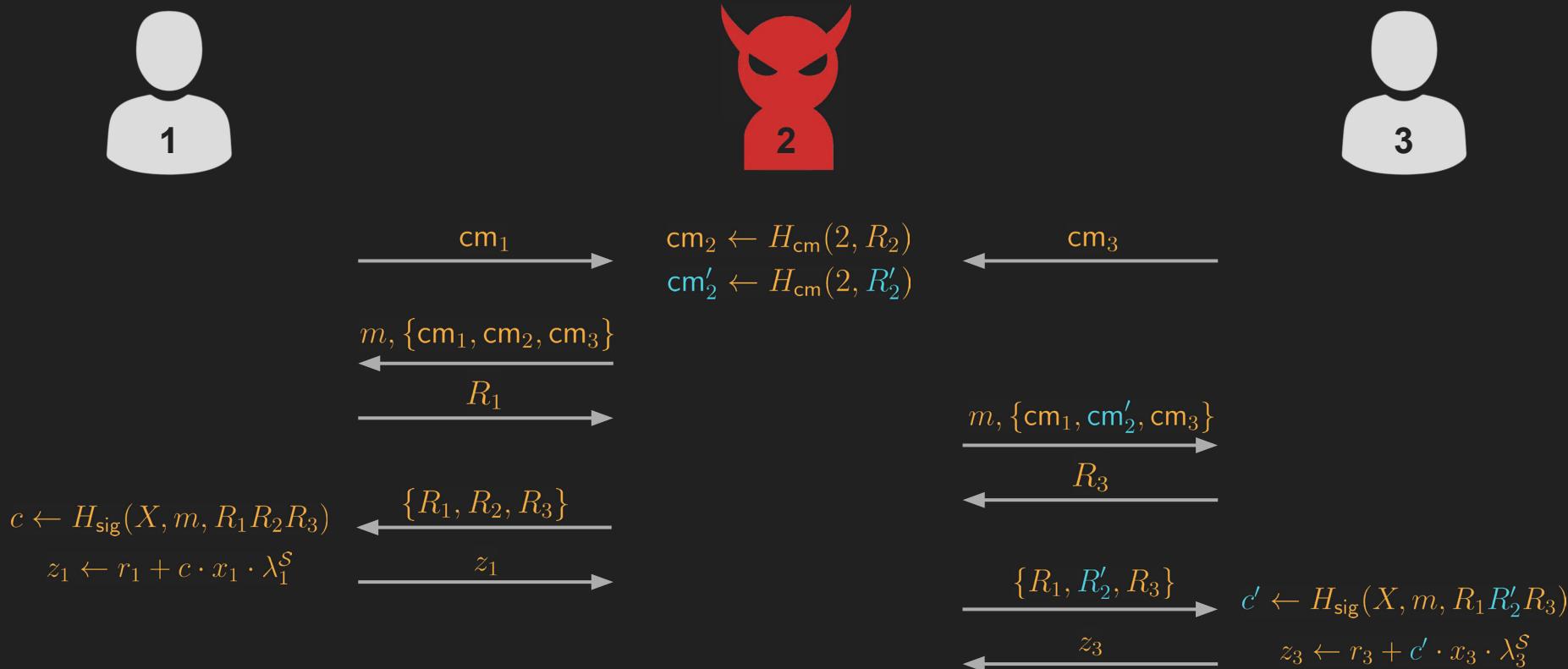
Counterexample: $t = 3$, $\mathcal{S} = \{1, 2, 3\}$



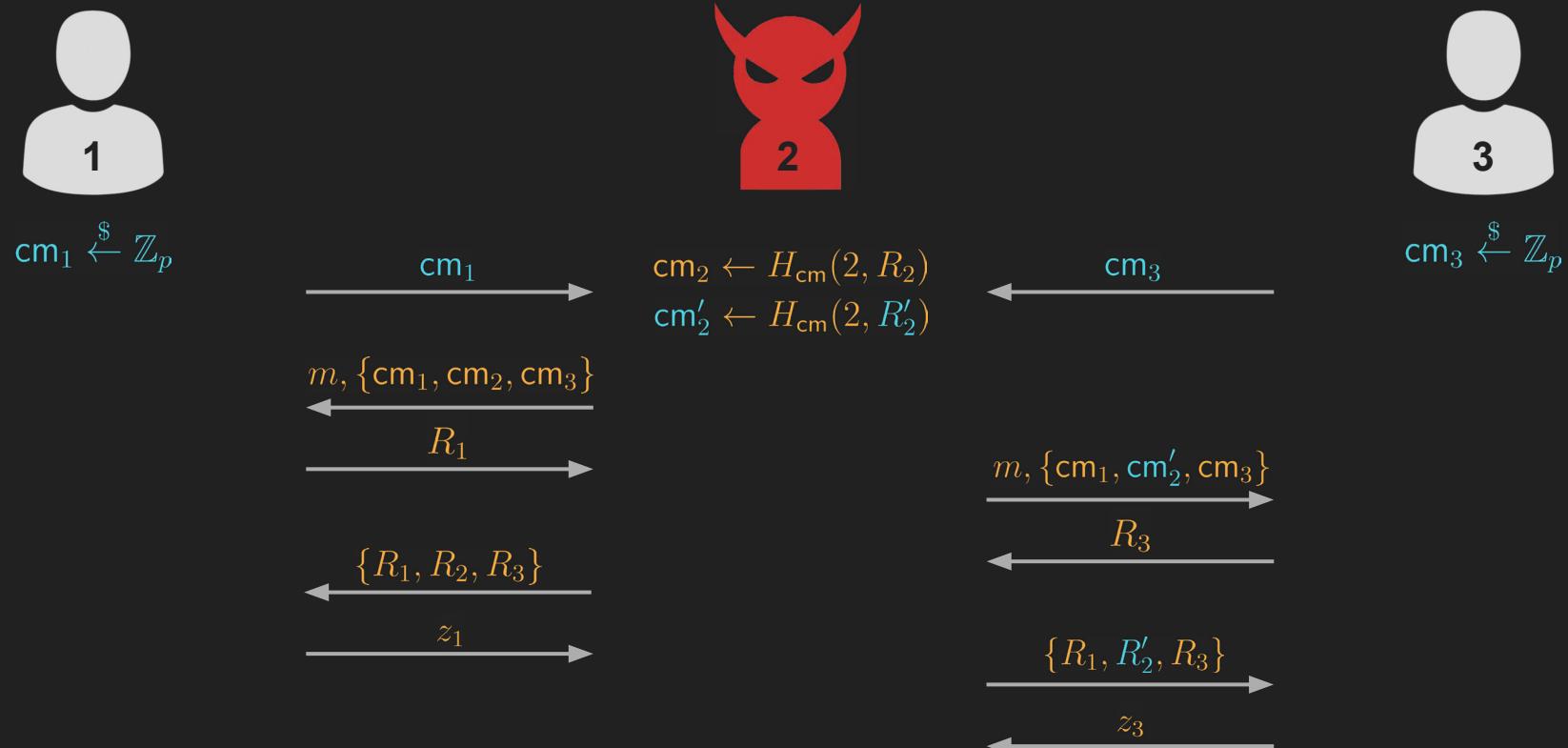
Counterexample: $t = 3$, $\mathcal{S} = \{1, 2, 3\}$



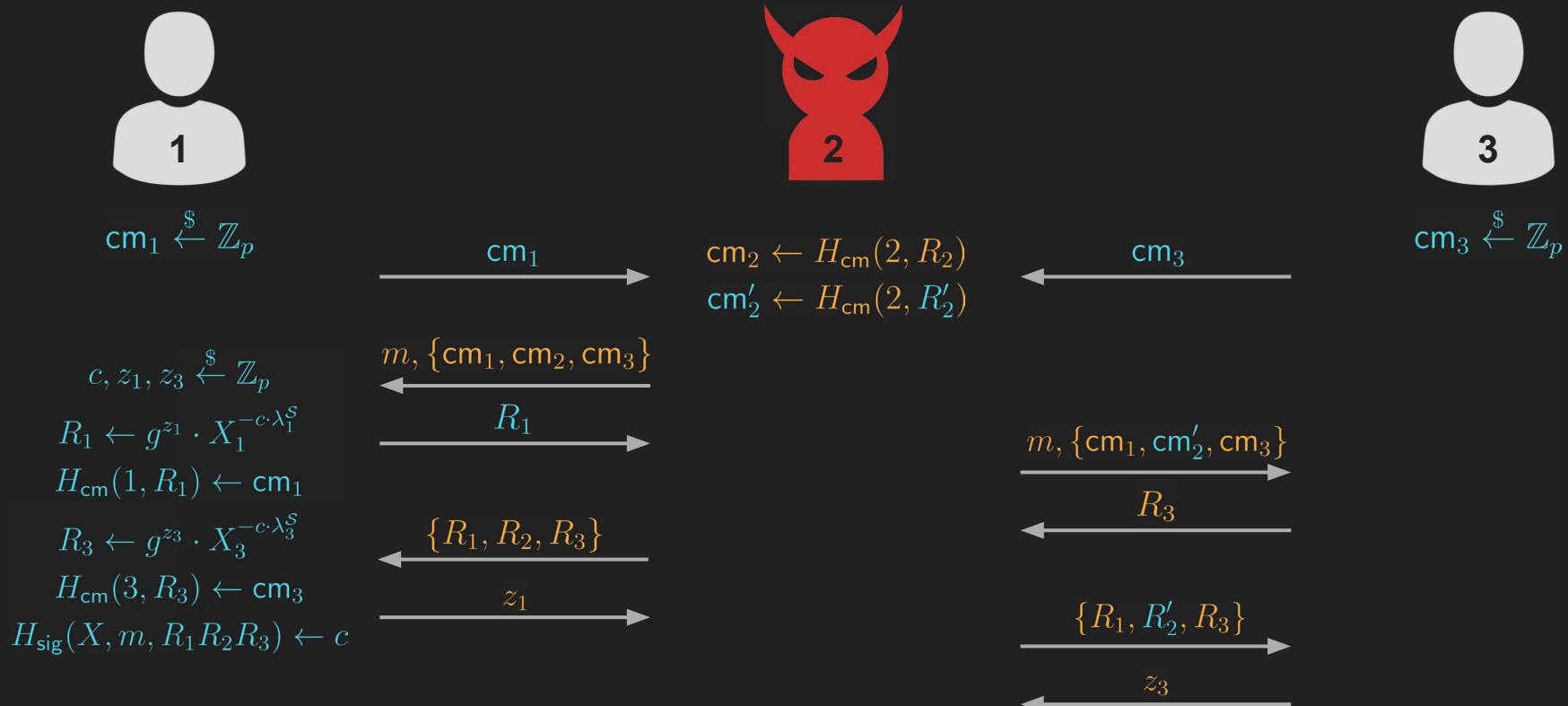
Counterexample: $t = 3$, $\mathcal{S} = \{1, 2, 3\}$



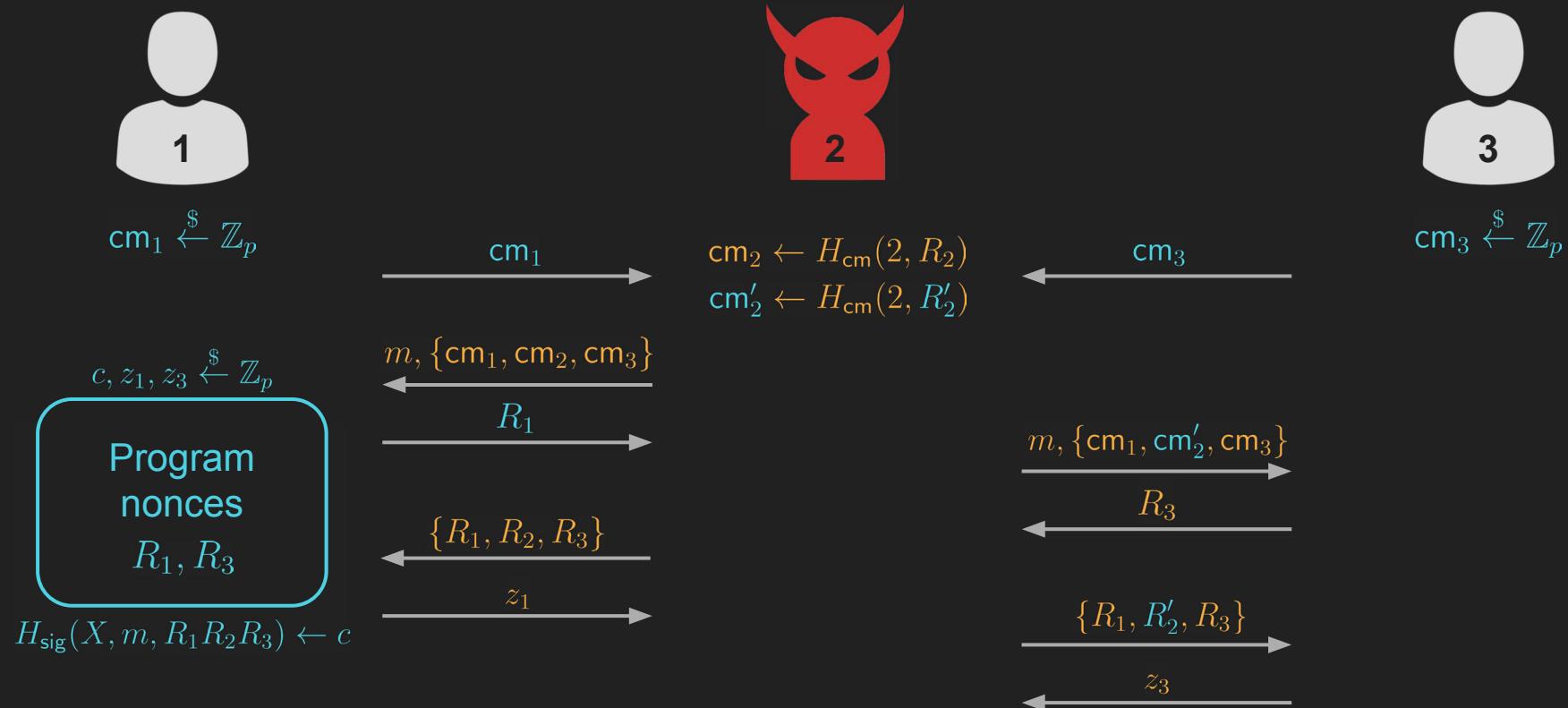
Counterexample: Original Simulation Strategy



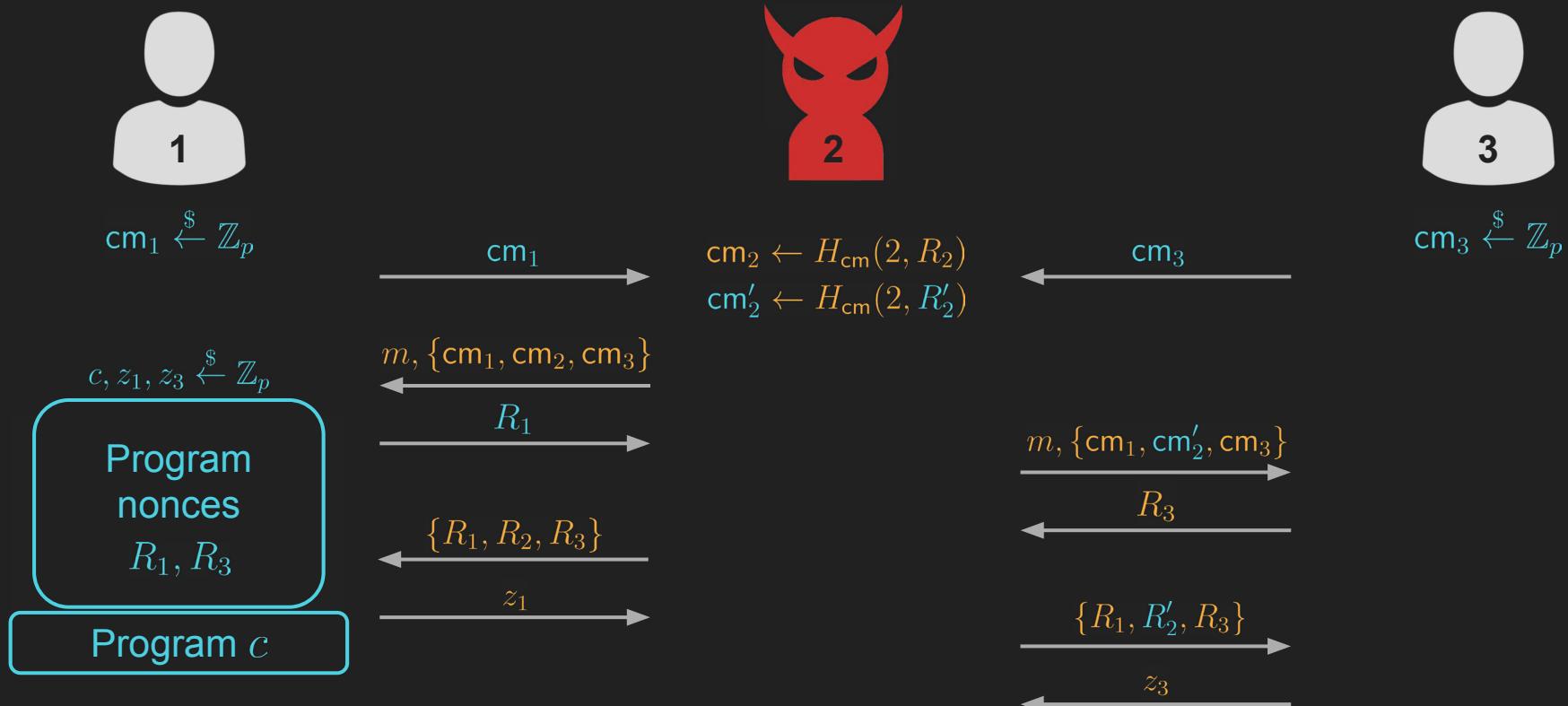
Counterexample: Original Simulation Strategy



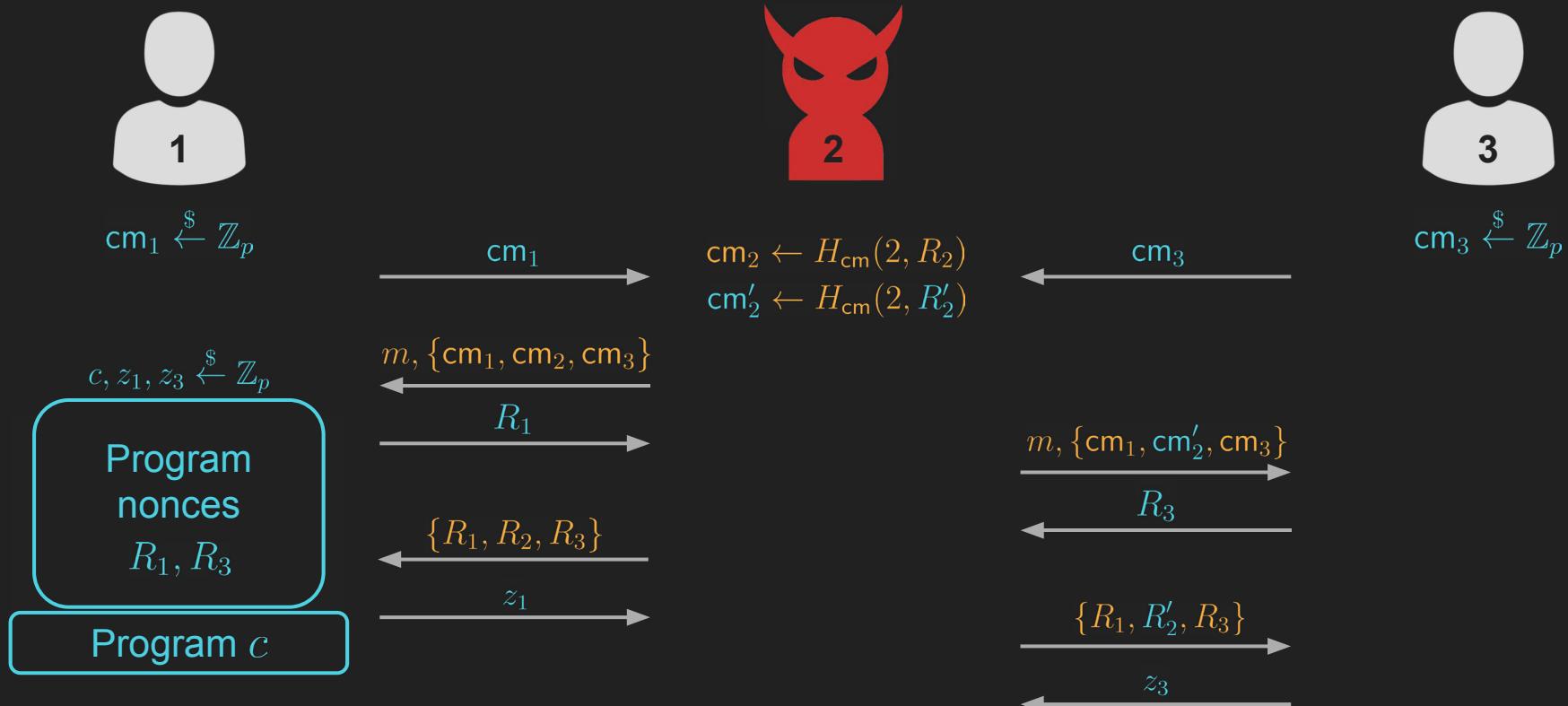
Counterexample: Original Simulation Strategy



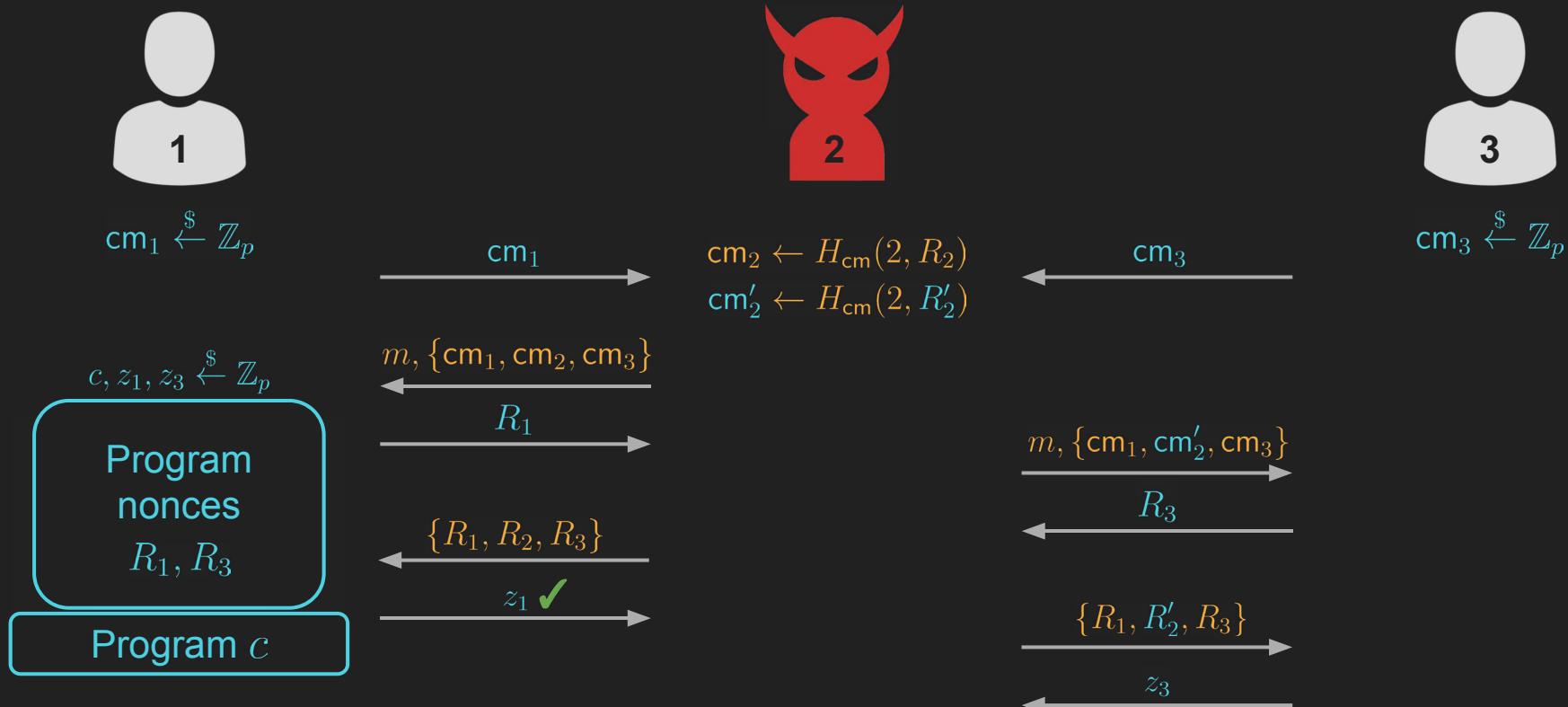
Counterexample: Original Simulation Strategy



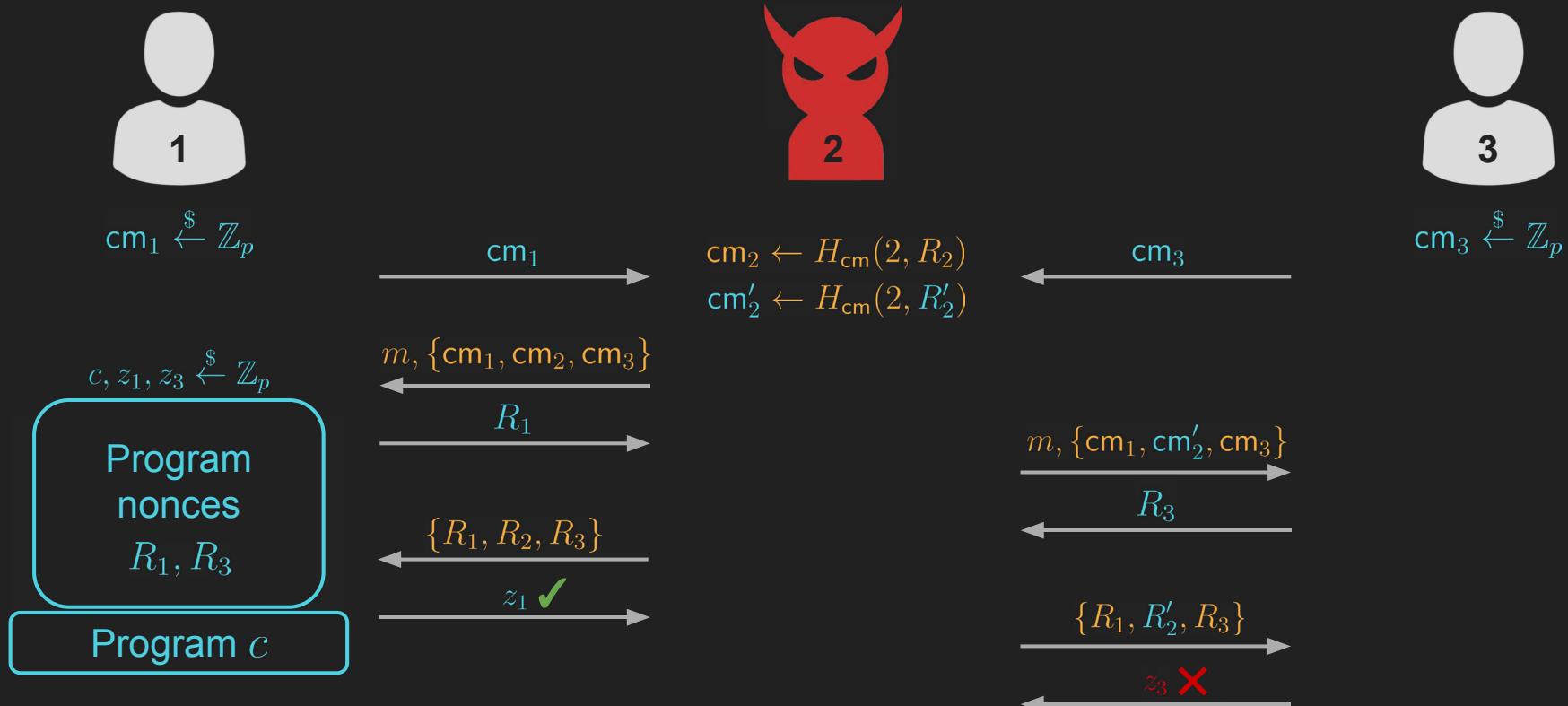
Counterexample: Original Simulation Strategy



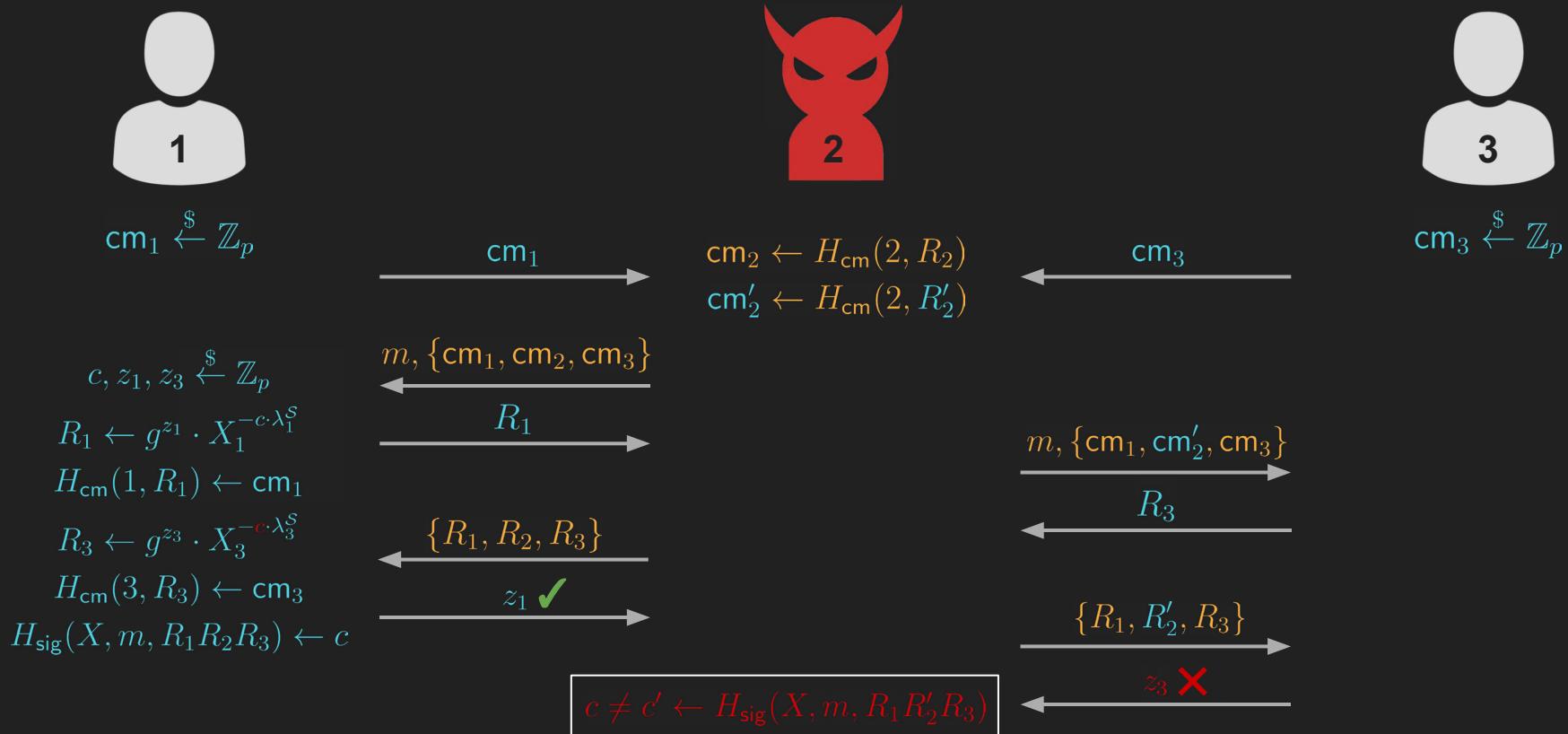
Counterexample: Original Simulation Strategy



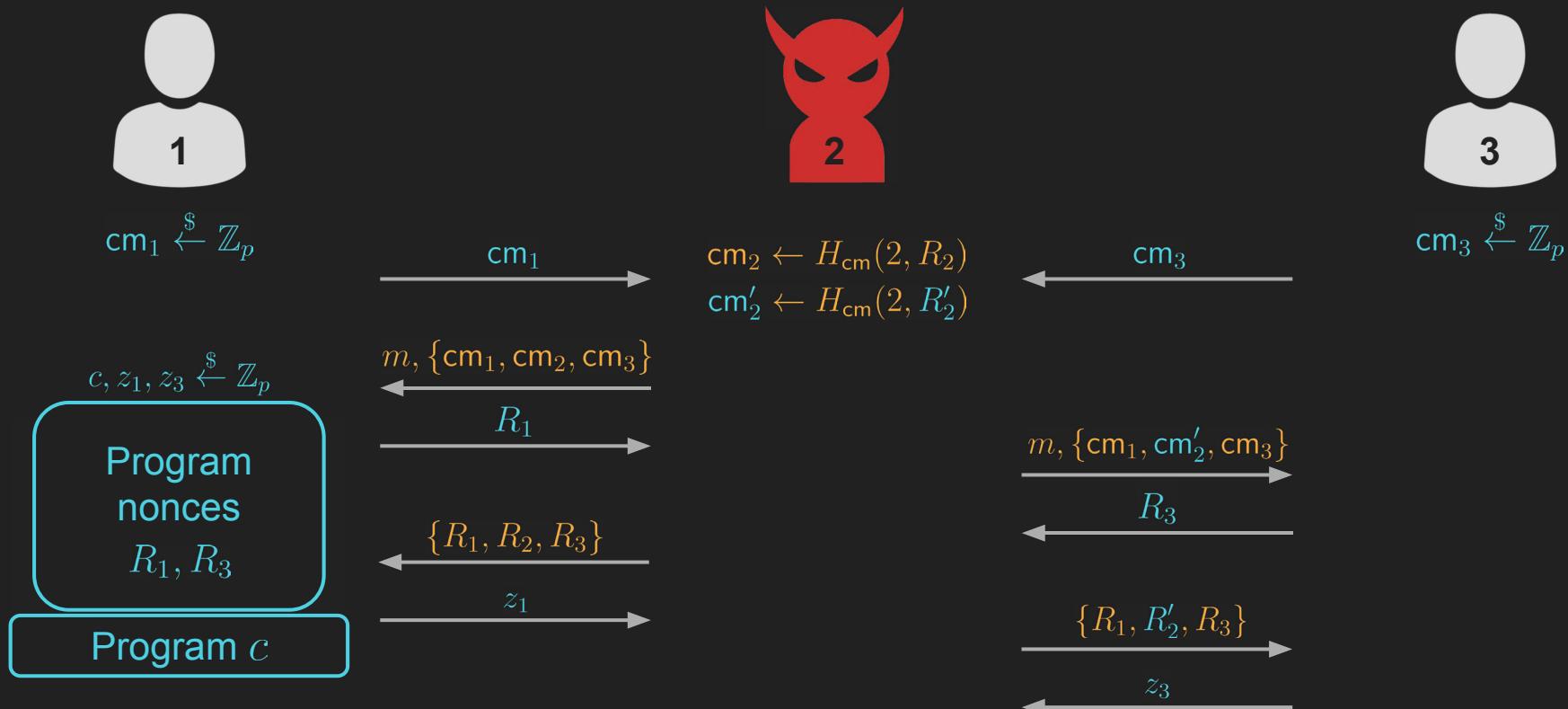
Counterexample: Original Simulation Strategy



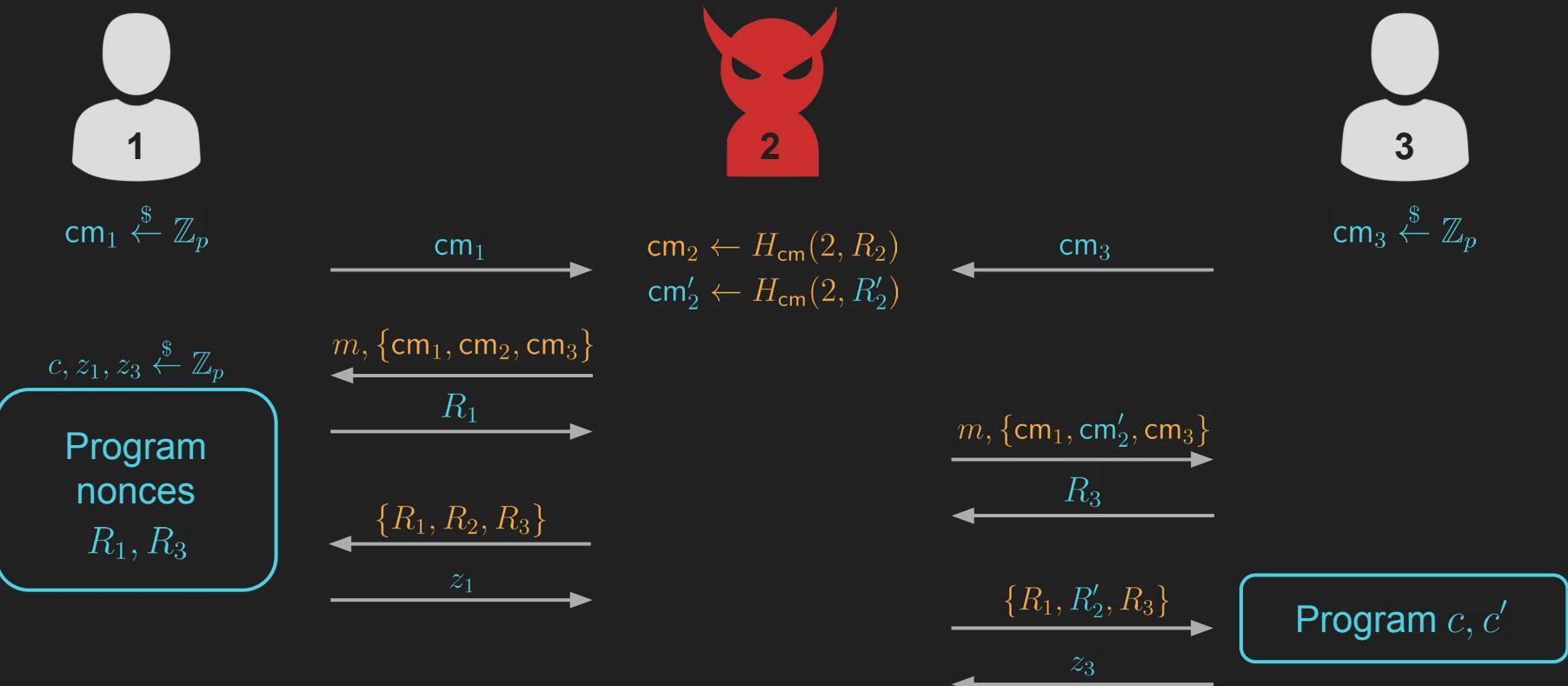
Counterexample: Original Simulation Strategy



Counterexample: The New Simulation Strategy



Counterexample: The New Simulation Strategy



Counterexample: The New Simulation Strategy

1

$$\text{cm}_1 \xleftarrow{\$} \mathbb{Z}_p$$

$$\xrightarrow{\text{cm}_1}$$

$$c, z_1 \xleftarrow{\$} \mathbb{Z}_p$$

Program
nonce R_1

$$\xleftarrow{m, \{\text{cm}_1, \text{cm}_2, \text{cm}_3\}}$$

$$\xrightarrow{R_1}$$

$$\xleftarrow{\{R_1, R_2, R_3\}}$$

$$\xrightarrow{z_1}$$

2

$$\text{cm}_2 \leftarrow H_{\text{cm}}(2, R_2)$$
$$\text{cm}'_2 \leftarrow H_{\text{cm}}(2, R'_2)$$

$$\xleftarrow{\text{cm}_3}$$

3

$$\text{cm}_3 \xleftarrow{\$} \mathbb{Z}_p$$

$$\xrightarrow{m, \{\text{cm}_1, \text{cm}'_2, \text{cm}_3\}}$$

$$\xrightarrow{R_3}$$

$$\xleftarrow{c', z_3 \xleftarrow{\$} \mathbb{Z}_p}$$

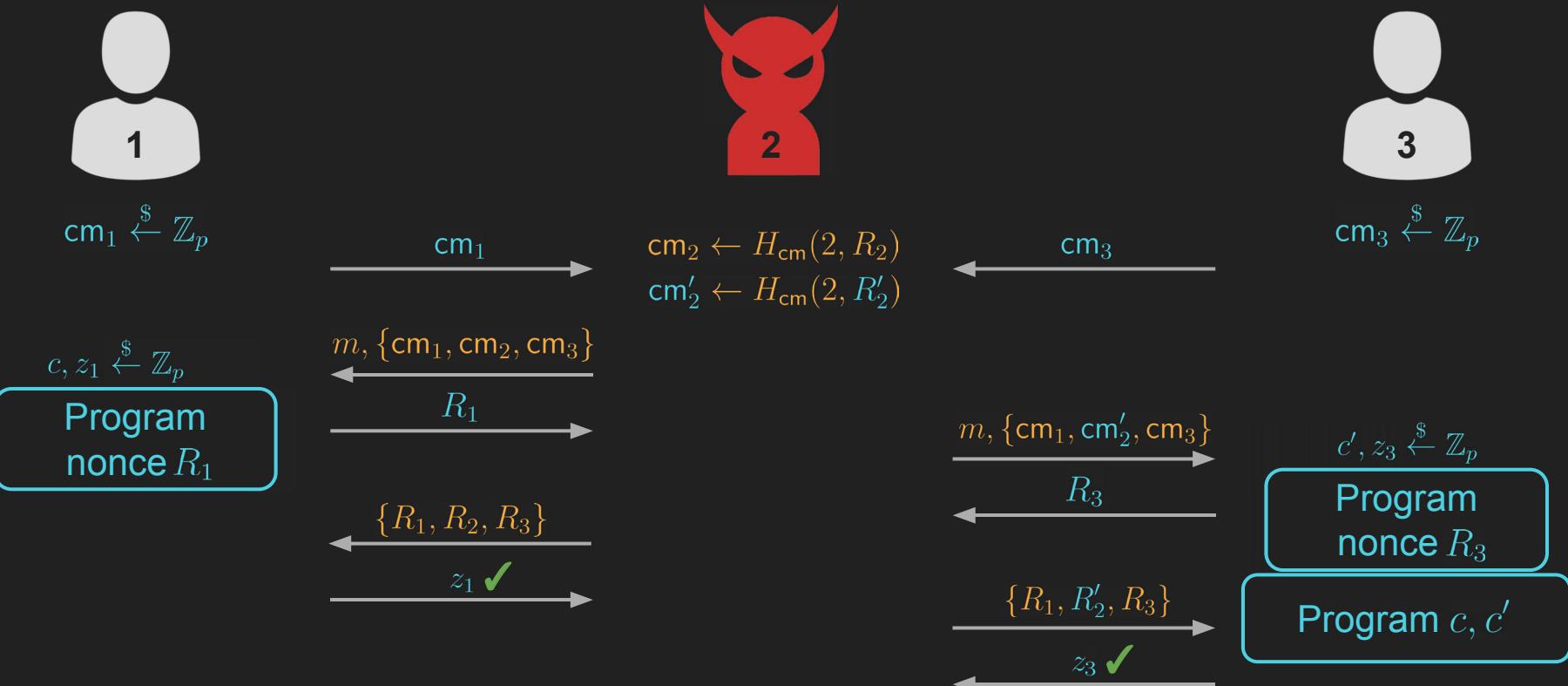
Program
nonce R_3

$$\xrightarrow{\{R_1, R'_2, R_3\}}$$

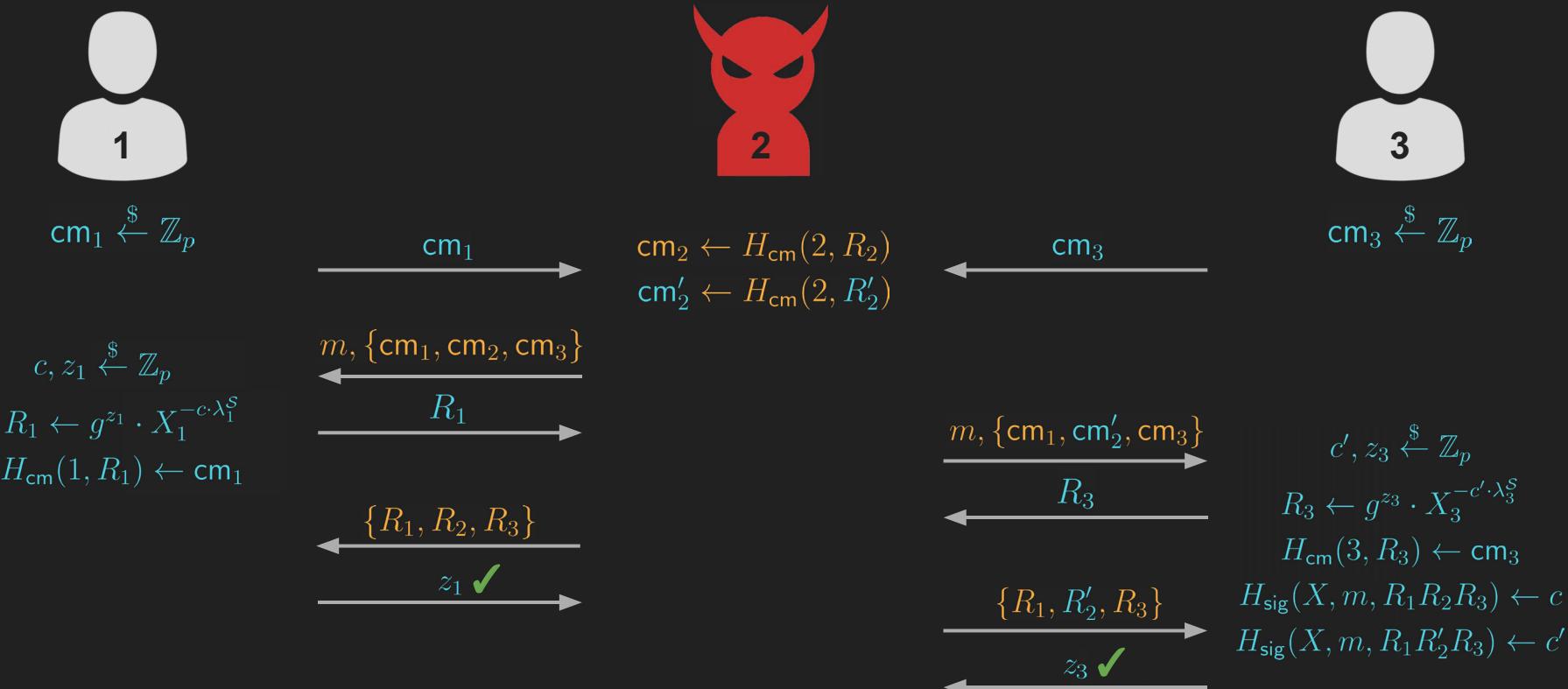
$$\xrightarrow{z_3}$$

Program c, c'

Counterexample: The New Simulation Strategy



Counterexample: The New Simulation Strategy



Problem 2: Avoiding Rewinding

Achieving Full Adaptive Security

- Our new simulation technique immediately yields **static security** of **Sparkle**

Achieving Full Adaptive Security

- Our new simulation technique immediately yields **static security** of **Sparkle**
- **Sparkle+** originally claimed **fully adaptively secure** [CKM23]

Achieving Full Adaptive Security

- Our new simulation technique immediately yields **static security** of **Sparkle**
- **Sparkle+** originally claimed **fully adaptively secure** [CKM23]
- However, Crites et al. [CS25, CKK+25] invalidate the proof:

Achieving Full Adaptive Security

- Our new simulation technique immediately yields **static security** of **Sparkle**
- **Sparkle+** originally claimed **fully adaptively secure** [CKM23]
- However, Crites et al. [CS25, CKK+25] invalidate the proof:
 - Introduce **LDVR** (low-dimensional vector representation) problem

Achieving Full Adaptive Security

- Our new simulation technique immediately yields **static security** of **Sparkle**
- **Sparkle+** originally claimed **fully adaptively secure** [CKM23]
- However, Crites et al. [CS25, CKK+25] invalidate the proof:
 - Introduce **LDVR** (low-dimensional vector representation) problem
 - Any such proof must rely on hardness of **LDVR**

Achieving Full Adaptive Security

- Our new simulation technique immediately yields **static security** of **Sparkle**
- **Sparkle+** originally claimed **fully adaptively secure** [CKM23]
- However, Crites et al. [CS25, CKK+25] invalidate the proof:
 - Introduce **LDVR** (low-dimensional vector representation) problem
 - Any such proof must rely on hardness of **LDVR**
- Our starting point – **Circular Discrete-Logarithm (CDL)** assumption:

Achieving Full Adaptive Security

- Our new simulation technique immediately yields **static security** of **Sparkle**
- **Sparkle+** originally claimed **fully adaptively secure** [CKM23]
- However, Crites et al. [CS25, CKK+25] invalidate the proof:
 - Introduce **LDVR** (low-dimensional vector representation) problem
 - Any such proof must rely on hardness of **LDVR**
- Our starting point – **Circular Discrete-Logarithm (CDL)** assumption:
 - Variant of DL we introduced to give **first tight proof** of basic Schnorr in **ROM** [CFO~~S~~25]

Achieving Full Adaptive Security

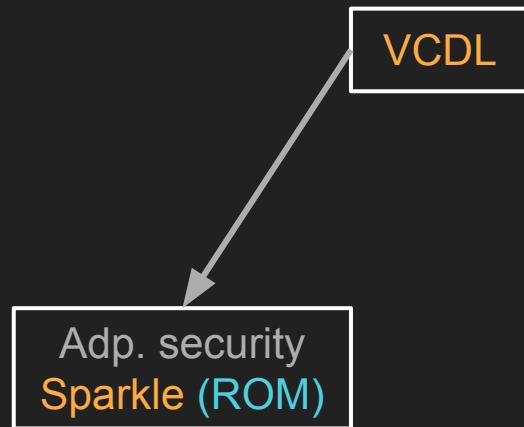
- Our new simulation technique immediately yields **static security** of **Sparkle**
- **Sparkle+** originally claimed **fully adaptively secure** [CKM23]
- However, Crites et al. [CS25, CKK+25] invalidate the proof:
 - Introduce **LDVR** (low-dimensional vector representation) problem
 - Any such proof must rely on hardness of **LDVR**
- Our starting point – **Circular Discrete-Logarithm (CDL)** assumption:
 - Variant of DL we introduced to give **first tight proof** of basic Schnorr in **ROM** [CFO~~S~~25]
 - Crucially, CDL avoids **rewinding** (and AGM)

Achieving Full Adaptive Security

- Our new simulation technique immediately yields **static security** of **Sparkle**
- **Sparkle+** originally claimed **fully adaptively secure** [CKM23]
- However, Crites et al. [CS25, CKK+25] invalidate the proof:
 - Introduce **LDVR** (low-dimensional vector representation) problem
 - Any such proof must rely on hardness of **LDVR**
- Our starting point – **Circular Discrete-Logarithm (CDL)** assumption:
 - Variant of DL we introduced to give **first tight proof** of basic Schnorr in **ROM** [CFO~~S~~25]
 - Crucially, **CDL avoids rewinding** (and AGM)
- We strengthen CDL to interactive variant: “**Vandermonde**” CDL (VCDL)

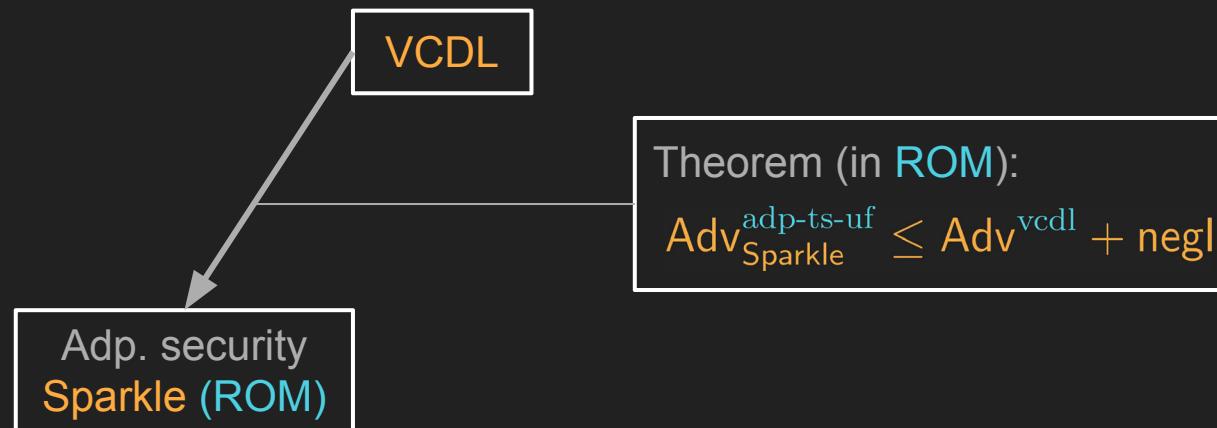
Main Results

- Tight proof of full adaptive security of **Sparkle** under **VCDL** in the **ROM**



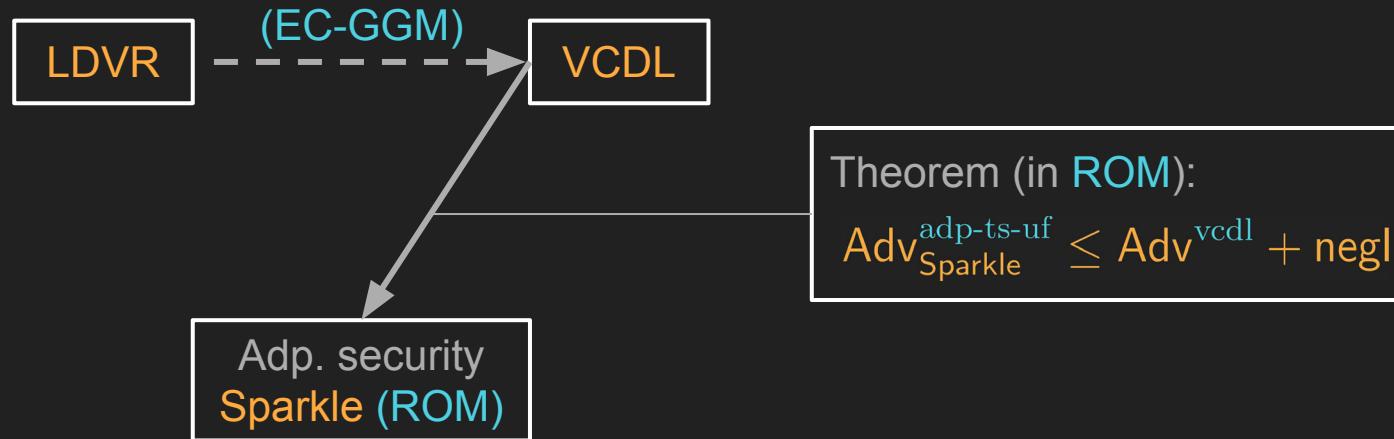
Main Results

- **Tight** proof of full adaptive security of **Sparkle** under **VCDL** in the **ROM**



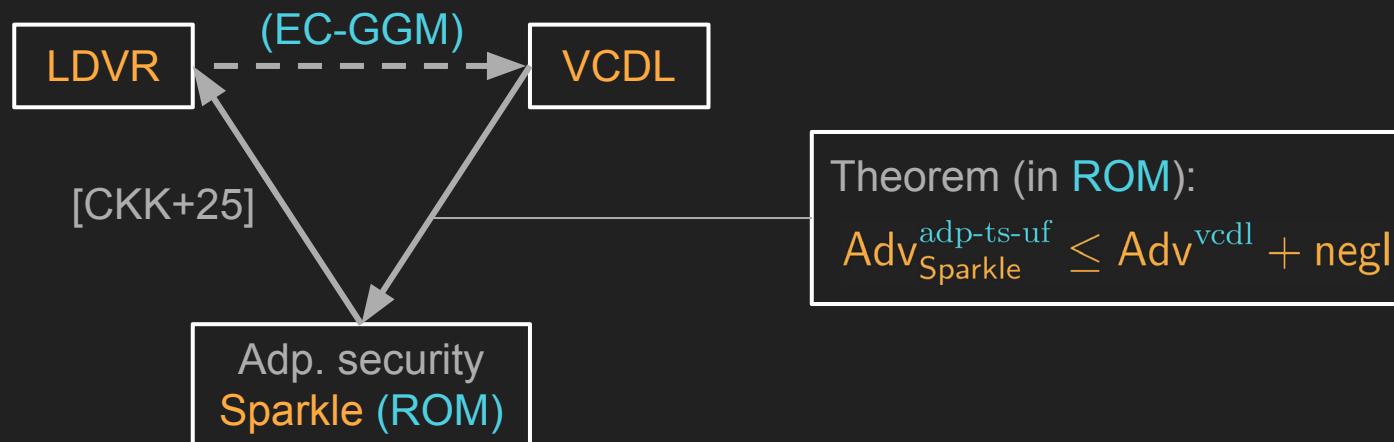
Main Results

- Tight proof of full adaptive security of **Sparkle** under **VCDL** in the **ROM**
- Justify **VCDL**: proof from **LDVR** in the **elliptic-curve GGM** [GS22]



Main Results

- Tight proof of full adaptive security of **Sparkle** under **VCDL** in the **ROM**
- Justify **VCDL**: proof from **LDVR** in the **elliptic-curve GGM** [GS22] (which is necessary)



More in the Full Paper...

“Revisiting the Security of Sparkle”

on ePrint soon...

Thanks!
Questions?

References

[BLT+24] Renas Bacho, Julian Loss, Stefano Tessaro, Benedikt Wagner, and Chenzhi Zhu. Twinkle: Threshold Signatures from DDH with Full Adaptive Security. In Advances in Cryptology – EUROCRYPT 2024, volume 14651 of LNCS, pages 429–459. Springer, 2024. https://doi.org/10.1007/978-3-031-58716-0_15.

[CFOS25] Gavin Cho, Georg Fuchsbauer, Adam O’Neill, and Marek Sefranek. Schnorr Signatures are Tightly Secure in the ROM Under a Non-interactive Assumption. In Advances in Cryptology – CRYPTO 2025, volume 16005 of LNCS, pages 223–255. Springer, 2025. https://doi.org/10.1007/978-3-032-01887-8_8.

[CKK+25] Elizabeth Crites, Jonathan Katz, Chelsea Komlo, Stefano Tessaro, and Chenzhi Zhu. On the Adaptive Security of FROST. In Advances in Cryptology – CRYPTO 2025, volume 16005 of LNCS, pages 480–511. Springer, 2025. https://doi.org/10.1007/978-3-032-01887-8_16.

[CKM23] Elizabeth Crites, Chelsea Komlo, and Mary Maller. Fully Adaptive Schnorr Threshold Signatures. In Advances in Cryptology – CRYPTO 2023, volume 14081 of LNCS, pages 678–709. Springer, 2023. https://doi.org/10.1007/978-3-031-38557-5_22.

[CS25] Elizabeth Crites and Alistair Stewart. A Plausible Attack on the Adaptive Security of Threshold Schnorr Signatures. In Advances in Cryptology – CRYPTO 2025, volume 16005 of LNCS, pages 457–479. Springer, 2025. https://doi.org/10.1007/978-3-032-01887-8_15.

[GS22] Jens Groth and Victor Shoup. On the Security of ECDSA with Additive Key Derivation and Presignatures. In Advances in Cryptology – EUROCRYPT 2022, volume 13275 of LNCS, pages 365–396. Springer, 2022. https://doi.org/10.1007/978-3-031-06944-4_13.

[PS96] David Pointcheval and Jacques Stern. Security Proofs for Signature Schemes. In Advances in Cryptology – EUROCRYPT 1996, volume 1070 of LNCS, pages 387–398. Springer, 1996. https://doi.org/10.1007/3-540-68339-9_33.