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o Distribute signing power among n parties
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Threshold Signatures

e f-out-of-n Threshold Signatures (TS):
o Distribute signing power among n parties
o Any subset > t can jointly generate a standard signature
o Compatible with a single, aggregate public key
e Security models: static vs. adaptive corruptions
e Schnorr signatures:
o Standardized & widely deployed (e.g., EADSA, Taproot)

o Schnorr TS: “out-of-the-box” compatibility with
plain Schnorr verification
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Motivation

e Qur focus: Sparkle (Crites, Komlo, and Maller [CKM23])
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Motivation

e Qur focus: Sparkle (Crites, Komlo, and Maller [CKM23])

e Concretely efficient & natural 3-round Schnorr TS scheme

e Follows a commit-reveal-sign paradigm

e However, Bacho et al. [BLT+24] identified a gap in original security proof

e To address this, Sparkle+ was introduced:
o Adds auxiliary signature scheme = significant overhead

o Proof of full adaptive security also later invalidated [CS25, CKK+25]

e These negative results identify proof deficiencies, not practical attacks!
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Our Question

Can the original Sparkle scheme be
proved—statically or even adaptively—secure?
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Goal 1: Full Adaptive Security

e Static corruption model
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Goal 1: Full Adaptive Security

e Static corruption model
e Adaptive corruption model:

o More realistic & practically relevant
e Full adaptive security:

o Allows (adaptive) corruptions of up to
one fewer than the signing threshold ¢

o Achieving this notion poses several challenges
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Goal 2: “Pure” ROM Security

e Random oracle model (ROM): idealizes hash function as random function
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Goal 2: “Pure” ROM Security

e Random oracle model (ROM): idealizes hash function as random function
e Security proofs for Schnorr-based constructions only known in ROM

e However, for full adp. security, many Schnorr TS schemes also rely on AGM:

o Algebraic group model (AGM) only considers “algebraic” adversaries

o E.g. FROST and its variants and the (flawed) full adp. security proof of Sparkle+

e Qur goal is to avoid additional idealized models
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Goal 3: Tight Security

e Suppose want to use Schnorr signatures over elliptic curve with
128-bit security — how large does the group order need to be?
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order of bits!

We should use a group Theoreticians
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Summary of Our Results

1. Introduce new simulation technique = static security of Sparkle
2. Introduce new assumption VCDL = tight full adaptive security of Sparkle

3. Justify VCDL: reduce VCDL to necessary assumption LDVR [CKK+25]

when idealizing the group
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Comparison with Selected Schemes

Scheme | Rounds Model Comm. / Signer Comp. / Signer
FROST 2 ROM+AGM 2G + 7, 3 Exp
Sparkle 3 ROM* G + 27, 1 Exp

Sparkle+ 3 ROM+AGM | 2G + Z, + |[DS.S| | 1Exp +DS.S +tDS.V

Gargos 3 ROM 2G + 72, 8 Exp + NIZK.P + t NIZK.V

* Our new result
DS = auxiliary signature scheme

NIZK = non-interactive zero-knowledge proof system
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The Sparkle Scheme

Group (G, p, g),
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The Sparkle Scheme

e Group (G, p,g), hash functions Hgg, Her: {0,1} — Z,

Sig»

e Shamir-secret-shared Schnorr secret key x with verification key shares X,

e 3 signing rounds:

1. Commit to random nonce R < ¢"* for 1, b Ly, cmy < Hem(k, Ry)
2. Open commitments: reveal ),
3. Verify openings and compute partial signature:

e = P =p (€ 0 G - )\S where C%HS,g<X,m,HRZ')
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The Sparkle Scheme

e Group (G, p,g), hash functions Hgg, Her: {0,1} — Z,

Sig»

e Shamir-secret-shared Schnorr secret key x with verification key shares X,

e 3 signing rounds:

1. Commit to random nonce R < ¢"* for 1, il Ly, cmy < Hem(k, Ry)
2. Open commitments: reveal 7}
3. Verify openings and compute partial signature:
2 T+ e xp - Ay, where ¢ <+ Hgo (X, m, [ R;)
e Final Schnorr signature: (R, z2) = ([[ R, 2)
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Problem 1:
How to Simulate Sparkle
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Original Simulation Strategy

e Core idea [CKM23]:
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Original Simulation Strategy

e Core idea [CKM23]:

o Instead of sampling r; i Z, for Ry < g"* and setting 2z <— 1y +c- xy, -

$ — I
o Sample 2, < Z, andset R, <+ ¢* - X, Fst rp=2, —c-xp- NS

e Bacho et al. [BLT+24] identified a gap:

o Simulation fails when adversary sends inconsistent commitments
to different honest parties

o Applies to both static & adaptive security

o Fixed in Sparkle+ by having parties sign their local views
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cmy , M2 Hen(2, Rs)
cml < Hen(2, RY)

m, {cmy, cmy, cm3}

<
R

-
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-
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Counterexample: =3, S = {1,2,3}

cmy cmy + Hem(2, Ry) cmg
> / , -
cml — Hen(2, RY)

m, {cmy, cmy, cm3}

-
Ry |

- m, {leacm2,Cm3}

-

R3
: -<
(E 5— Hsig(X, m, R1R2R3> < {Rl, R27 RJ}
Zl(*T’leC-gjl./\sf 2z _
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Counterexample: =3, S = {1,2,3}

cmy cmy < Hen(2, Ro) cms
> , , <7
Eliily o= LSl s 15

m, {cmy, cmy, cm3}

-
I%
1 > m, {cmy, cmj, cms}
>
Fi3
¢« Hyg(X,m, RiloRs) {R1, Rs, Rs} <
21%7’1+C'-’171'X1§ - > 2 I
{R17R27R5} ~ c Hsig(X.,7rz,,R1R§R:s>
- 23 zZ3 S I3 + C/ * X3 )\§
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Counterexample: Original Simulation Strategy

Gl = . cmy CMy $— Hcm<27 RQ) cmsg CMmg <— D
> / / -
cm,, T Hcm<2> R2>
m, {cmy, cma, cmg}
-
I%
1 > m, {cmy, cmj, CmSi
{R1, Ry, B3} —
- 1, 25 3
Z
>
<3
<
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Counterexample: Original Simulation Strategy

$
cmjy cmy < Hen(2, Ro) cms cmg < Zy,
> , , <7
cml — Hen(2, RY)
c, 21, %3 ji Zp T: {le,cmg,cm;;}
Z — @) R
By g%t -X; L > m, {cmy, cmj, cms}
Hcm(17 Rl) — R .
. 3
Rs ¢ g™ - X3 & < {Ri, Rs, R3} -
Hcm(g- Rd) — (g 21
/ /
Hsig<X: TfL7R]R2R3> 5— € — {Rl,RQ,Rg} .
<3
-
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Counterexample: Original Simulation Strategy

$
cmy < Z, cmy cmy — Hem(2, Ry) T
g L Hon(2,R))
cml — Hen(2, RY)
¢, 21, 23 & ZP T: {le, Cmsy, Cm3}
R
L - m, {cmy, cmj, cms}
Program i
nonces {R o } . Rs
R17 R3 < 1, £12, £13
21 ;
HSig(Xu m, RIRQRS) = € > {R17R27R3} -
<3
-
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Counterexample: Original Simulation Strategy

$
€l &=

cmy cmy + Hem(2, Ry) cmg
> / / <«
cml — Hen(2, RY)
m,{cm;, cmsy, cm:
c,zl,z;;éZp 4/{ ! ° d}
i e m, {cmy, cm), cm3}
Program ey
nonces (R B, B} - R
le R3 < 1, 29 23
21
> {RlaRéaR‘d}
Program c -
23
-
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Counterexample: Original Simulation Strategy

$
cmy < Z, cm, cmy < Hen(2, Ro) cmg
> L Ho (2 R)
cm,, T cm( ) 2)
m,1CMy, CMg, CM:
C>ZI=Z3£ZP 4/{ : - 3}
» m, {leacm‘/27cm3}
Program =
nonces < lit
R17 R3
» {Rb Rlza Rd}
Program c -
- <3
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Counterexample: Original Simulation Strategy
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> L Ho (2 R)
cm,, T cm( ) 2)
m,1CMy, CMg, CM:
C>ZI=Z3£ZP 4/{ : - 3}
R
1 > m, {le,Cm;,Cmg}
Program =
nonces (Ry. Ry, R} < lit
Rl, R3 - 1, 4v2, L3
R4
1 > {RlaszaR‘d}
| Program c | -
- <3
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Counterexample: Original Simulation Strategy

$
€l &=

cmy cmy < Hen(2, Ro) cms
> ) ) <
Eliily o= LSl s 15
m, {cmy, cms, cm:
c,zl,z;;éZp 4/{ ! 2 ‘3}

i e m, {cmy, cm), cm3}
Program ey
nonces . B ] . Rs

1, 29 23

Ry, Ry <

<1 /

> {RlaRéaR‘d}
| Program c | >
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Counterexample: Original Simulation Strategy

$
cmy < Zy cmy cmy < Hen(2, Ro) cms

> <
Eliily o= LSl s 15

m, {cmy, cmy, cm3}

C, 21,23 <i Zp <7
= —@AS R
By <= g7 - X 7 1’ B m, {cmy, cm), cm3}
Hen(1, Ry) < cmy I >
S ’3

R;; = .(]Z:; : X: A < {R17 R27 Riﬁ} -

Hem(3, R3) < cmg R4 . R OR.R
Hsig(X-, TTL,R]RQR;;) S C { Lo /3} >
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Counterexample: The New Simulation Strategy

$
cmy < Z, cm cmy ¢ Hen(2, R) .
> / H 2 R ¢
cm, <— Cm( : 2)
C, 21,23 é ZP T’ {leach,Cm3}
g m, {leacm;,Cm3}
Program )
nonces ) B
R17 R3
g {Rb R{Z, Rj}
Program c »
< <3
TUCY (58P
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Counterexample: The New Simulation Strategy

$ 7 $ Z
> / H 2 R ¢
cm, <— Cm( : 2)
C, 21,23 & Ly, Tv {ecmy, cmy, cms}
R
1 > m, {cthm{Z?CmS}
Program )
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Counterexample: The New Simulation Strategy
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example: The New Simulation Strategy
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Problem 2:
Avoiding Rewinding
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Achieving Full Adaptive Security

e Our new simulation technique immediately yields static security of Sparkle
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Achieving Full Adaptive Security

e Our new simulation technique immediately yields static security of Sparkle
e Sparkle+ originally claimed fully adaptively secure [CKM23]
e However, Crites et al. [CS25, CKK+25] invalidate the proof:
o Introduce LDVR (low-dimensional vector representation) problem
o  Any such proof must rely on hardness of LDVR
e Our starting point — Circular Discrete-Logarithm (CDL) assumption:
o Variant of DL we introduced to give first tight proof of basic Schnorr in ROM [CFOS25]
o  Crucially, CDL avoids rewinding (and AGM)
e We strengthen CDL to interactive variant: “Vandermonde” CDL (VCDL)
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Main Results

e Tight proof of full adaptive security of Sparkle under VCDL in the ROM

VCDL

Adp. security
Sparkle (ROM)
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Main Results

e Tight proof of full adaptive security of Sparkle under VCDL in the ROM
e Justify VCDL: proof from LDVR in the elliptic-curve GGM [GS22]
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Main Results

e Tight proof of full adaptive security of Sparkle under VCDL in the ROM

e Justify VCDL: proof from LDVR in the elliptic-curve GGM [GS22]
(which is necessary)
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More in the Full Paper...

‘Revisiting the Security of Sparkle”

on ePrint soon...

Thanks!
Questions?
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