
Kemeleon: 
Elligator-like Obfuscation for ML-KEM 

1

Felix Günther
IBM Research – Zurich

Michael Rosenberg
Cloudflare

Douglas Stebila
University of Waterloo

Shannon Veitch
ETH Zurich



Uniform Representations
Internet protocols hide metadata to protect user privacy, dissuade protocol 
fingerprinting, and prevent network ossification

- TLS 1.3 Encrypted Client Hello, QUIC, obfs4, Shadowsocks, …

- “Fully encrypted” protocols, with obfuscated key exchange

Some PAKEs need to operate on random bytestrings

Previously: Elligator maps elliptic curve public keys to random bytestrings

2

DH gx

DH gy
101001..

011010..

What about post-quantum key exchanges? Can use Saber or FrodoKEM.

What about standardized post-quantum key exchanges?



 3 

Byte Distribution of ML-KEM Public Keys

Seed (Uniformly Distributed)Public Key Coefficients
Image credit: Jack Wampler



Kemeleon: Rejection-Sampling Pubkeys
ML-KEM public keys

Vector of polynomials with coefficients mod q

4

[ a1 ][ a2 ][ a3 ]...[ ab ] ai ∊ ℤq (q=3329, each ai requires 12 bits)

Most sig. bit of each value biased towards 0

Kemeleon encoding for public keys

1. Accumulate into one big integer
2. Rejection sampling: reject if msb is 1

[ A = a1 + a2∙ q + a3∙ q3 + ∙ ∙ ∙  + ab∙ qb-1 ] A is a number mod qb-1

Most sig. bit still biased towards 0

Günther, Stebila, Veitch. Obfuscated Key Exchange. CCS 2024

Encoded public keys ~2.5% smaller than regular 
(19/28/38 bytes for ML-KEM-512/768/1024)

MLKEM-768 likelihood of rejection is 17%



Compression step in Encap performs rounding which 
results in a non-uniform ciphertext distribution. 

Kemeleon: Rejection-Sampling Ciphertexts

5

ML-KEM ciphertexts

Vector of polynomials with coefficients mod q

Günther, Stebila, Veitch. Obfuscated Key Exchange. CCS 2024.

Kemeleon encoding for ciphertexts:
1. Decompress and “recover” randomness 

from ciphertexts

2. Use same rejection-sampling method as 
before



Kemeleon without Rejection

Applying techniques from Tibouchi 2014 (Elligator2): 
1. Take the big integer output from encoding with 

bytelength < n

2. Randomly pad it to n + 32 bytes (or alternative value, 
depending on security requirements)

6Günther, Stebila, Veitch. Kemeleon Encodings. Internet-Draft https://datatracker.ietf.org/doc/draft-veitch-kemeleon/ 

Encoded public keys are ~ same size as in 
standard ML-KEM.

Likelihood of rejection is 0%

https://datatracker.ietf.org/doc/draft-veitch-kemeleon/


Using Kemeleon with ML-KEM: an OKEM

7

ML-Kemeleon.KGen()

1. repeat
2.   (sk,pk) <-$ MLKEM.KGen()
3.   pk’ <- Kemeleon.EncodePk(pk)
4. until pk’ != ⊥
5. return (sk,pk’)

ML-Kemeleon.Encap(pk’)

1. pk <- Kemeleon.DecodePk(pk’)
2. repeat
3.   (c,K) <-$ MLKEM.Encap(pk)
4.   c’ <- Kemeleon.EncodeCtxt(c)
5. until c’ != ⊥
6. return (c’,K)

- IND-CCA: IND-CCA of ML-KEM
- SPR-CCA: SPR-CCA of ML-KEM and ciphertext 

uniformity
- ctxt uniformity: SPR-CCA of ML-KEM 
- pk uniformity: reduces to MLWE

+ small loss from rejection rates in each case

Note: while Elligator is 
statistically uniform, Kemeleon 
relies on MLWE assumption.



Using Kemeleon: Dos and Don’ts
Dos!

- Append the seed as usual to the encoded 
portion of the public seed

- Consider a constant-time implementation 
for big integer arithmetic, if this is in your 
threat model (also, consider timing side 
channels due to rejection sampling)

8Günther, Stebila, Veitch. Kemeleon Encodings. Internet-Draft https://datatracker.ietf.org/doc/draft-veitch-kemeleon/ 

Don’ts!

- Use randomness derived from the KEM 
shared secret to seed the encoding 
algorithm (i.e., careful with key 
separation)

- Reveal randomness used for the 
encoding algorithm (i.e., randomness 
must be kept secret)

https://datatracker.ietf.org/doc/draft-veitch-kemeleon/


What can you do with an OKEM?
Combine OKEMs

- Requires 1 statistical OKEM (DHKEM+Elligator) and 1 
computational OKEM (ML-Kemeleon)

Make hybrid obfuscated key exchange

- Key agreement that looks like random. Think obfs4 (Tor 
bridge protocol)

Make hybrid password-authenticated key exchange (PAKE)

- First hybrid PAKE with security against adaptive 
corruptions

9



10

PRF

c1|| c2

K

Encap

Encap

pk1

pk2

c1
K1

c2
K2

Hybrid KEMs: The Parallel Approach

Hybrid IND-CCA 

Approach used in hybrid TLS 1.3, Xyber, X-Wing, …

Hybrid Obfuscation (also, SPR-CCA, which implies anonymity)



11

Outer-Encrypts-Inner Nested Combiner (OEINC)



12

Encap

Encap

pk1

pk2

c1
K1

c2
K2

Outer-Encrypts-Inner Nested Combiner (OEINC)
"outOKEM"

"inOKEM"



13

Encap

Encap

pk1

pk2

c1
K1

c2
K2

PRG

Outer-Encrypts-Inner Nested Combiner (OEINC)
"outOKEM"

"inOKEM"

K1e,K1k



14

Encap

Encap

pk1

pk2

c1
K1

c2
K2

PRG

SE.Enc c2’

Outer-Encrypts-Inner Nested Combiner (OEINC)
"outOKEM"

"inOKEM"

K1e,K1k



15

Encap

Encap

pk1

pk2

c1
K1

c2
K2

c1|| c2’
PRG

SE.Enc c2’

Outer-Encrypts-Inner Nested Combiner (OEINC)
"outOKEM"

"inOKEM"

K1e,K1k



16

Encap

Encap
PRF

pk1

pk2

c1
K1

c2
K2

c1|| c2’

K

PRG

SE.Enc c2’

Outer-Encrypts-Inner Nested Combiner (OEINC)
"outOKEM"

"inOKEM"

K1e,K1k



Outer-Encrypts-Inner Nested Combiner (OEINC)

17

Encap

Encap
PRF

pk1

pk2

c1
K1

c2
K2

c1|| c2’

K

PRG

K1e,K1k

SE.Enc c2’

Hybrid IND-CCA 

Hybrid Obfuscation (also, SPR-CCA, which implies anonymity)

Minimal overhead: 1 PRG + 1 XOR

"outOKEM"

"inOKEM"



Instantiating OEINC
Security Properties
Requires:

- outOKEM must have statistical strong ciphertext uniformity
(ciphertexts must look uniform, even if you know sk, pk)

18

outOKEM can be DHKEM
sk = x       pk = xG

ct = Elligator2(r · pk)

Concrete Instantiation

outOKEM = DHKEM[Ristretto]+Elligator2

inOKEM = ML-Kemeleon/Saber/Frodo

Achieves:

- IND-CCA     outOKEM is IND-CCA      or        inOKEM is IND-CCA

- SPR-CCA    outOKEM is SPR-CCA      or        inOKEM is SPR-CCA

- Ciphertext uniformity    outOKEM is IND-CCA     or      inOKEM is ct-unif

- Public key uniformity      outOKEM is pk-unif       and    inOKEM  is pk-unif

inOKEM can basically be 
any ct-unif KEM

(and pk-unif if you want it)

We don’t get hybrid public key uniformity! (Likely impossible)

We also don’t always need hybrid pk-unif



Applications of OEINC: Obfuscated Key Exchange
Drivel: A Hybrid Obfuscated Key Exchange Protocol
(O)KEM-based AKE

19

(ske, pke) := KEM.Keygen()

(c1, K1) := OKEM.Encap(pkS)

epke := SE.EncK1(pke)

Client Server skS pkS

c1 epke K1 := OKEM.DecapskS(c1)

pke := SE.DecK1(epke)

(c2, K2) := KEM.Encap(pke)

ec2 := SE.EncK1(c2)
ec2c2 := SE.DecK1(ec2)

K2 := OKEM.Decapske(c2)

No public key 
uniformity necessary

return H(K1, K2)

return H(K1, K2)

Pubkeys are encrypted with 
intermediate secrets



This is 2 rounds. Other PAKEs are 3 rounds 
or inefficient (350x slowdown). 

Password authenticated key exchange (PAKE)
- Parties w/ low-entropy password want to establish a 

high-entropy shared secret:

- Active adversary has 1 pw guess per protocol 
execution

- Passive adversary has no advantage at all

KEM-based PAKEs (NoIC, CHIC, HIC, CAKE, OCAKE, …)
- CAKE proven secure in the UC model with adaptive 

corruptions (adversaries can corrupt any user at any time)

Applications of OEINC: Hybrid PAKE

20

We can instantiate CAKE with
OEINC[DHKEM+Elligator, StatFrodoKEM]

7.5x comms overhead compared to 
3-round PAKEs

- Needs ciphertext and public key uniformity

- First hybrid PAKE with security against adaptive corruptions



21 

Thanks! Questions?
References:

- Günther, Stebila, Veitch. Obfuscated Key Exchange. 
CCS 2024. ia.cr/2024/1086 

- Günther, Stebila, Veitch. Kemeleon Encodings. 
Internet-Draft. 
https://datatracker.ietf.org/doc/draft-veitch-kemeleon/ 

- Günther, Rosenberg, Stebila, Veitch. Hybrid Obfuscated 
KEMs and Key Exchange. IACR ePrint soon!

Encap

Encap
PRF

pk1

pk2

c1
K1

c2
K2

c1||c2’

K

PRG

K1e,K1k

SE.Enc c2’

We made:
- an OKEM from ML-KEM
- an OKEM combiner

We got:
- Hybrid obfuscated key exchange
- Hybrid PAKE

http://ia.cr/2024/1086
https://datatracker.ietf.org/doc/draft-veitch-kemeleon/

